Uremic toxins induce kidney fibrosis by activating intrarenal renin-angiotensin-aldosterone system associated epithelial-to-mesenchymal transition

Chiao Yin Sun, Shih Chung Chang, Mai Szu Wu

研究成果: 雜誌貢獻文章

128 引文 斯高帕斯(Scopus)

摘要

Background: Uremic toxins are considered to have a determinant pathological role in the progression of chronic kidney disease. The aim of this study was to define the putative pathological roles of the renal renin-angiotensin-aldosterone system (RAAS) and renal tubular epithelial-to-mesenchymal transition (EMT) in kidney fibrosis induced by (indoxyl sulfate) IS and (p-cresol sulfate) PCS. Methods: Mouse proximal renal tubular cells (PKSV-PRs) treated with IS or PCS were used. Half-nephrectomized B-6 mice were treated with IS or PCS for 4 weeks. In the losartan treatment study, the study animal was administrated with IS+losartan or PCS+losartan for 4 weeks. Results: IS and PCS significantly activated the intrarenal RAAS by increasing renin, angiotensinogen, and angiotensin 1 (AT1) receptor expression, and decreasing AT2 receptor expression in vitro and in vivo. IS and PCS significantly increased transforming growth factor-β1 (TGF-β1) expression and activated the TGF-β pathway by increasing Smad2/Smad2-P, Smad3/Smad3-P, and Smad4 expression. The expression of the EMT-associated transcription factor Snail was increased by IS and PCS treatment. IS and PCS induced the phenotype of EMT-like transition in renal tubules by increasing the expression of fibronectin and α-smooth muscle actin and decreasing the expression of E-cadherin. Losartan significantly attenuated the expression of TGF-β1 and Snail, and decreased kidney fibrosis induced by IS and PCS in vivo. Conclusion: Activating the renal RAAS/TGF-β pathway has an important pathological role in chronic kidney injury caused by IS and PCS. IS and PCS may increase Snail expression and induce EMT-like transition.

原文英語
文章編號e34026
期刊PLoS One
7
發行號3
DOIs
出版狀態已發佈 - 三月 30 2012
對外發佈Yes

ASJC Scopus subject areas

  • Agricultural and Biological Sciences(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Medicine(all)

指紋 深入研究「Uremic toxins induce kidney fibrosis by activating intrarenal renin-angiotensin-aldosterone system associated epithelial-to-mesenchymal transition」主題。共同形成了獨特的指紋。

  • 引用此