Three-dimensional tertiary structure of yeast phenylalanine transfer RNA

S. H. Kim, F. L. Suddath, G. J. Quigley, A. McPherson, J. L. Sussman, A. H.J. Wang, N. C. Seeman, Alexander Rich

研究成果: 雜誌貢獻文章同行評審

741 引文 斯高帕斯(Scopus)


The 3-angstrom electron density map of crystalline yeast phenylalanine transfer RNA has provided us with a complete three-dimensional model which defines the positions of all of the nucleotide residues in the molecule. The overall features of the molecule are virtually the same as those seen at a resolution of 4 angstroms except that many additional details of tertiary structure are now visualized. Ten types of hydrogen bonding are identified which define the specificity of tertiary interactions. The molecule is also stabilized by considerable stacking of the planar purities and pyrimidines. This tertiary structure explains, in a simple and direct fashion, chemical modification studies of transfer RNA. Since most of the tertiary interactions involve nucleotides which are common to all transfer RNA's, it is likely that this three-dimensional structure provides a basic pattern of folding which may help to clarify the three-dimensional structure of all transfer RNA's.

頁(從 - 到)435-440
出版狀態已發佈 - 1974

ASJC Scopus subject areas

  • 多學科


深入研究「Three-dimensional tertiary structure of yeast phenylalanine transfer RNA」主題。共同形成了獨特的指紋。