The role of the ERK1/2 pathway as an alternative to the aging-diminished cyclic AMP pathway in calcitonin-mediated chondrogenesis in human nucleus pulposus

Wei Hong Chen, Rong Zeng, Wen Cheng Lo, Szu Yu Tina Chen, Tung-Iuan Lai, David F. Williams, Win Ping Deng

研究成果: 雜誌貢獻文章

9 引文 斯高帕斯(Scopus)

摘要

Human disc degeneration initiated by aging in the central nucleus pulposus (hNP) is an irreversible process and the recovery has become seriously emerging. In this study, the related mechanisms of calcitonin on the regeneration of hNP and the effects of calcitonin on the age-related alterations were examined. The harvested hNP population was designated as YhNP (from young donor, age 50). Primary OhNP cells showed more hypertrophic phenotypes than YhNP. However, calcitonin (10-8-10-6 M) was able to induce the same chondrogenesis in both YhNP and OhNP by elevating chondrogenic specific-mRNA and protein expressions. Their cell viabilities were increased with calcitonin treatment. No significant differences of calcitonin receptor (CTR) were expressed between YhNP and OhNP cells. Interestingly, in calcitonin-induced pathways for chondrogenesis, highly increased cyclic AMP (cAMP) was detected in YhNP but was strongly diminished by aging in OhNP after calcitonin treatment. However, to maintain the chondrogenesis, calcitonin-induced an alterative phosphorylated ERK1/2 (p-ERK) in both cells. After inhibiting ERK1/2 by PD98059, calcitonin-induced chondrogenesis in OhNP was almost restrained while YhNP cells were not affected. Our results demonstrated that the regeneration of calcitonin on hNP was maintained with aging which was satisfied by an alternative signaling pathway. Therefore, calcitonin shows great potential for clinical therapy for disc regeneration without aging considerations.

原文英語
頁(從 - 到)8256-8264
頁數9
期刊Biomaterials
33
發行號33
DOIs
出版狀態已發佈 - 十一月 2012

ASJC Scopus subject areas

  • Biomaterials
  • Bioengineering
  • Ceramics and Composites
  • Mechanics of Materials
  • Biophysics

指紋 深入研究「The role of the ERK1/2 pathway as an alternative to the aging-diminished cyclic AMP pathway in calcitonin-mediated chondrogenesis in human nucleus pulposus」主題。共同形成了獨特的指紋。

  • 引用此