The Dipeptidyl Peptidase-4 Inhibitor Linagliptin Ameliorates Endothelial Inflammation and Microvascular Thrombosis in a Sepsis Mouse Model

Shen Chih Wang, Xiang Yu Wang, Chung Te Liu, Ruey Hsing Chou, Zhen Bouman Chen, Po Hsun Huang, Shing Jong Lin

研究成果: 雜誌貢獻文章同行評審

1 引文 斯高帕斯(Scopus)

摘要

The pathophysiology of sepsis involves inflammation and hypercoagulability, which lead to microvascular thrombosis and compromised organ perfusion. Dipeptidyl peptidase (DPP)-4 inhibitors, e.g., linagliptin, are commonly used anti-diabetic drugs known to exert anti-inflammatory effects. However, whether these drugs confer an anti-thrombotic effect that preserves organ perfusion in sepsis remains to be investigated. In the present study, human umbilical vein endothelial cells (HUVECs) were treated with linagliptin to examine its anti-inflammatory and anti-thrombotic effects under tumor necrosis factor (TNF)-α treatment. To validate findings from in vitro experiments and provide in vivo evidence for the identified mechanism, a mouse model of lipopolysaccharide (LPS)-induced systemic inflammatory response syndrome was used, and pulmonary microcirculatory thrombosis was measured. In TNF-α-treated HUVECs and LPS-injected mice, linagliptin suppressed expressions of interleukin-1β (IL-1β) and intercellular adhesion molecule 1 (ICAM-1) via a nuclear factor-κB (NF-κB)–dependent pathway. Linagliptin attenuated tissue factor expression via the Akt/endothelial nitric oxide synthase pathway. In LPS-injected mice, linagliptin pretreatment significantly reduced thrombosis in the pulmonary microcirculation. These anti-inflammatory and anti-thrombotic effects were independent of blood glucose level. Together the present results suggest that linagliptin exerts protective effects against endothelial inflammation and microvascular thrombosis in a mouse model of sepsis.
原文英語
文章編號3065
期刊International journal of molecular sciences
23
發行號6
DOIs
出版狀態已發佈 - 3月 1 2022

ASJC Scopus subject areas

  • 催化
  • 分子生物學
  • 光譜
  • 電腦科學應用
  • 物理與理論化學
  • 有機化學
  • 無機化學

指紋

深入研究「The Dipeptidyl Peptidase-4 Inhibitor Linagliptin Ameliorates Endothelial Inflammation and Microvascular Thrombosis in a Sepsis Mouse Model」主題。共同形成了獨特的指紋。

引用此