摘要
BACKGROUND:
Ethanol consumption might induce hepatic apoptosis and cause liver damage. The study was to investigate the effects of different doses of β-carotene supplementation on the antioxidant capacity and hepatic apoptosis in chronic ethanol-fed rats.
METHODS:
Rats were divided into 6 groups: C (control liquid diet), CLB [control liquid diet with β-carotene supplementation at 0.52 mg/kg body weight (BW)/day], CHB (control liquid diet with β-carotene supplementation at 2.6 mg/kg BW/day), E (ethanol liquid diet), ELB (ethanol liquid diet with β-carotene supplementation at 0.52 mg/kg BW/day), and EHB (ethanol liquid diet with β-carotene supplementation at 2.6 mg/kg BW/day). After 12 weeks, rats were sacrificed and blood and liver samples were collected for analysis.
RESULTS:
Lipid peroxidation and hepatic cytochrome P450 2E1 (CYP2E1) expression had increased, and hepatic Fas ligand, caspase-8, cytochrome c, caspase-9, and -3 expressions had significantly increased in the E group. However, lipid peroxidation and CYP2E1, caspase-9, and -3 expressions were significantly lower and Bcl-xL expression was higher in the ELB group. The hepatic tumor necrosis factor (TNF)-α level, lipid peroxidation, and cytochrome c expression were significantly lower and Bcl-2 expression was significantly higher in the EHB group.
CONCLUSIONS:
The results suggest that ethanol treatment causes oxidative stress and hepatic apoptosis leading to liver injury, and β-carotene supplementation (0.52 mg/kg BW/day) can prevent ethanol-induced liver damage by decreasing ethanol-induced oxidative stress and inhibiting apoptosis in the liver.
Ethanol consumption might induce hepatic apoptosis and cause liver damage. The study was to investigate the effects of different doses of β-carotene supplementation on the antioxidant capacity and hepatic apoptosis in chronic ethanol-fed rats.
METHODS:
Rats were divided into 6 groups: C (control liquid diet), CLB [control liquid diet with β-carotene supplementation at 0.52 mg/kg body weight (BW)/day], CHB (control liquid diet with β-carotene supplementation at 2.6 mg/kg BW/day), E (ethanol liquid diet), ELB (ethanol liquid diet with β-carotene supplementation at 0.52 mg/kg BW/day), and EHB (ethanol liquid diet with β-carotene supplementation at 2.6 mg/kg BW/day). After 12 weeks, rats were sacrificed and blood and liver samples were collected for analysis.
RESULTS:
Lipid peroxidation and hepatic cytochrome P450 2E1 (CYP2E1) expression had increased, and hepatic Fas ligand, caspase-8, cytochrome c, caspase-9, and -3 expressions had significantly increased in the E group. However, lipid peroxidation and CYP2E1, caspase-9, and -3 expressions were significantly lower and Bcl-xL expression was higher in the ELB group. The hepatic tumor necrosis factor (TNF)-α level, lipid peroxidation, and cytochrome c expression were significantly lower and Bcl-2 expression was significantly higher in the EHB group.
CONCLUSIONS:
The results suggest that ethanol treatment causes oxidative stress and hepatic apoptosis leading to liver injury, and β-carotene supplementation (0.52 mg/kg BW/day) can prevent ethanol-induced liver damage by decreasing ethanol-induced oxidative stress and inhibiting apoptosis in the liver.
原文 | 英語 |
---|---|
頁(從 - 到) | 132-41 |
頁數 | 10 |
期刊 | Hepatobiliary surgery and nutrition |
卷 | 2 |
發行號 | 3 |
DOIs | |
出版狀態 | 已發佈 - 六月 2013 |