Surface antifouling modification on polyethylene filtration membranes by plasma polymerization

An Li Hou, Szu Yi Wang, Wen Pin Lin, Wei Hsuan Kuo, Tsung Jen Wang, Meng Jiy Wang

研究成果: 雜誌貢獻文章同行評審

摘要

Surface modification on microporous polyethylene (PE) membranes was facilitated by plasma polymerizing with two hydrophilic precursors: ethylene oxide vinyl ether (EO1V) and diethylene oxide vinyl ether (EO2V) to effectively improve the fouling against mammalian cells (Chinese hamster ovary, CHO cells) and proteins (bovine serum albumin, BSA). The plasma polymerization procedure incorporated uniform and pin-hole free ethylene oxide-containing moieties on the filtration membrane in a dry single-step process. The successful deposition of the plasma polymers was verified by Fourier-transform infrared (FTIR), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS) analyses. Water contact angle measurements and permeation experiments using cell and protein solutions were conducted to evaluate the change in hydrophilicity and fouling resistance for filtrating biomolecules. The EO1V and EO2V plasma deposited PE membranes showed about 1.45 fold higher filtration performance than the pristine membrane. Moreover, the flux recovery reached 80% and 90% by using deionized (DI) water and sodium hydroxide (NaOH) solution, indicating the efficacy of the modification and the good reusability of the modified PE membranes.
原文英語
文章編號5020
頁(從 - 到)1-13
頁數13
期刊Materials
13
發行號21
DOIs
出版狀態已發佈 - 十一月 2020

ASJC Scopus subject areas

  • 材料科學(全部)

指紋

深入研究「Surface antifouling modification on polyethylene filtration membranes by plasma polymerization」主題。共同形成了獨特的指紋。

引用此