Substituted benz[a]acridines and benz[c]acridines as mammalian topoisomerase poisons

Darshan Makhey, Chiang Yu, Angela Liu, Leroy-Fong Liu, Edmond J. Lavoie

研究成果: 雜誌貢獻文章同行評審

39 引文 斯高帕斯(Scopus)

摘要

Coralyne and several other synthetic benzo[a,g]quinolizium derivatives related to protoberberine alkaloids have exhibited activity as topoisomerase poisons. These compounds are characterized by the presence of a positively charged iminium group, which has been postulated to be associated with their pharmacological properties. The objective of the present study was to devise stable noncharged bioisosteres of these compounds. Several similarly substituted benz[a]acridine and benz[c]acridine derivatives were synthesized and their relative activity as topoisomerase poisons was determined. While the benz[c]acridine derivatives evaluated as part of this study were devoid of topoisomerase poisoning activity, several dihydrobenz[a]acridines were able to enhance DNA cleavage in the presence of topo I. In contrast to certain protoberberine derivatives that did exhibit activity as topo II poisons, none of the benz[a]acridines derivatives enhanced DNA cleavage in the presence of topo II. Among the benz[a]acridines studied, 5,6-dihydro-3,4- methylenedioxy-9,10-dimethoxybenz[a]acridine, 13e, was the most potent topo I poison, with comparable potency to coralyne. These data suggest that heterocyclic compounds structurally related to coralyne can exhibit potent topo I posioning activity despite the absence of an iminium cation within their structure. In comparison to coralyne or other protoberberine derivatives, these benz[a]acridine derivatives possess distinctly different physicochemical properties and represent a novel series of topo I poisons. (C) 2000 Elsevier Science Ltd.

原文英語
頁(從 - 到)1171-1182
頁數12
期刊Bioorganic and Medicinal Chemistry
8
發行號5
DOIs
出版狀態已發佈 - 5月 2000
對外發佈

ASJC Scopus subject areas

  • 生物化學
  • 分子生物學
  • 有機化學
  • 藥物發現
  • 藥學科學

指紋

深入研究「Substituted benz[a]acridines and benz[c]acridines as mammalian topoisomerase poisons」主題。共同形成了獨特的指紋。

引用此