Stretchable-rubber-based triboelectric nanogenerator and its application as self-powered body motion sensors

Fang Yi, Long Lin, Simiao Niu, Po Kang Yang, Zhaona Wang, Jun Chen, Yusheng Zhou, Yunlong Zi, Jie Wang, Qingliang Liao, Yue Zhang, Zhong Lin Wang

研究成果: 雜誌貢獻文章同行評審

214 引文 斯高帕斯(Scopus)

摘要

A stretchable-rubber-based (SR-based) triboelectric nanogenerator (TENG) is developed that can not only harvest energy but also serve as self-powered multifunctional sensors. It consists of a layer of elastic rubber and a layer of aluminum film that acts as the electrode. By stretching and releasing the rubber, the changes of triboelectric charge distribution/density on the rubber surface relative to the aluminum surface induce alterations to the electrical potential of the aluminum electrode, leading to an alternating charge flow between the aluminum electrode and the ground. The unique working principle of the SR-based TENG is verified by the coupling of numerical calculations and experimental measurements. A comprehensive study is carried out to investigate the factors that may influence the output performance of the SR-based TENG. By integrating the devices into a sensor system, it is capable of detecting movements in different directions. Moreover, the SR-based TENG can be attached to a human body to detect diaphragm breathing and joint motion. This work largely expands the applications of TENG not only as effective power sources but also as active sensors; and opens up a new prospect in future electronics. A stretchable-rubber-based triboelectric nanogenerator is developed, which can not only harvest energy but also serve as self-powered multifunctional sensors. It is composed of a layer of elastic rubber and a layer of aluminum film that acts as the electrode. Electrical outputs are generated by stretching and releasing the rubber. It can be attached to a human body to detect diaphragm breathing and joint motion.
原文英語
頁(從 - 到)3688-3696
頁數9
期刊Advanced Functional Materials
25
發行號24
DOIs
出版狀態已發佈 - 六月 1 2015
對外發佈

ASJC Scopus subject areas

  • 化學 (全部)
  • 材料科學(全部)
  • 凝聚態物理學

指紋

深入研究「Stretchable-rubber-based triboelectric nanogenerator and its application as self-powered body motion sensors」主題。共同形成了獨特的指紋。

引用此