Sense of self impacts spatial navigation and hexadirectional coding in human entorhinal cortex

Hyuk June Moon, Baptiste Gauthier, Hyeong Dong Park, Nathan Faivre, Olaf Blanke

研究成果: 雜誌貢獻文章同行評審

摘要

Grid cells in entorhinal cortex (EC) encode an individual’s location in space and rely on environmental cues and self-motion cues derived from the individual’s body. Body-derived signals are also primary signals for the sense of self and based on integrated sensorimotor signals (proprioceptive, tactile, visual, motor) that have been shown to enhance self-centered processing. However, it is currently unknown whether such sensorimotor signals that modulate self-centered processing impact grid cells and spatial navigation. Integrating the online manipulation of bodily signals, to modulate self-centered processing, with a spatial navigation task and an fMRI measure to detect grid cell-like representation (GCLR) in humans, we report improved performance in spatial navigation and decreased GCLR in EC. This decrease in entorhinal GCLR was associated with an increase in retrosplenial cortex activity, which was correlated with participants’ navigation performance. These data link self-centered processes during spatial navigation to entorhinal and retrosplenial activity and highlight the role of different bodily factors at play when navigating in VR.

原文英語
文章編號406
期刊Communications Biology
5
發行號1
DOIs
出版狀態已發佈 - 12月 2022

ASJC Scopus subject areas

  • 醫藥(雜項)
  • 生物化學、遺傳與分子生物學 (全部)
  • 農業與生物科學 (全部)

指紋

深入研究「Sense of self impacts spatial navigation and hexadirectional coding in human entorhinal cortex」主題。共同形成了獨特的指紋。

引用此