Self-reactivated mesostructured Ca-Al-O composite for enhanced high-temperature CO2 capture and carbonation/calcination cycles performance

Po Hsueh Chang, Wei Chen Huang, Tai Jung Lee, Po Yen Chang, San Yuan Chen

研究成果: 雜誌貢獻文章

8 引文 斯高帕斯(Scopus)

摘要

In this study, highly efficient high-temperature CO2 sorbents of calcium aluminate (Ca-Al-O) mesostructured composite were synthesized using presynthesized mesoporous alumina (MA) as a porous matrix to react with calcium nitrate through a microwave-assisted process. Upon annealing at 600 °C, a highly stable mesoporous structure composed of poorly crystalline Ca12Al14O33 phase and the CaO matrix was obtained. The Ca-Al-O mesostructured sorbents with a Ca2+/Al3+ ratio of 5:1 exhibit an enhanced increasing CO2 absorption kinetics in the CO2 capture capacity from 37.2 wt % to 48.3 wt % without apparent degradation with increasing carbonation/calcination cycling up to 50 at 700 °C due to the strong self-reactivation effect of the mesoporous Ca-Al-O microstructure. Remarkable improvements in the CaO-CaCO3 conversion attained from the mesostructured Ca-Al-O composite can be explained using the concept combined with available mesoporous structure and Ca12Al14O33 phase content. However, a high Ca2+/Al3+ =8:1 Ca-Al-O composite causes degradation because the pores become blocked and partial sintering induces CaO agglomeration.
原文英語
頁(從 - 到)6172-6179
頁數8
期刊ACS Applied Materials and Interfaces
7
發行號11
DOIs
出版狀態已發佈 - 三月 25 2015
對外發佈Yes

ASJC Scopus subject areas

  • Materials Science(all)

指紋 深入研究「Self-reactivated mesostructured Ca-Al-O composite for enhanced high-temperature CO2 capture and carbonation/calcination cycles performance」主題。共同形成了獨特的指紋。

  • 引用此