Role of GDF15/MAPK14 Axis in Chondrocyte Senescence as a Novel Senomorphic Agent in Osteoarthritis

Pei Wei Weng, Narpati Wesa Pikatan, Syahru Agung Setiawan, Vijesh Kumar Yadav, Iat Hang Fong, Chia Hung Hsu, Chi Tai Yeh, Wei Hwa Lee

研究成果: 雜誌貢獻文章同行評審

1 引文 斯高帕斯(Scopus)

摘要

Osteoarthritis (OA) is most prevalent in older individuals and exerts a heavy social and economic burden. However, an effective and noninvasive approach to OA treatment is currently not available. Chondrocyte senescence has recently been proposed as a key pathogenic mechanism in the etiology of OA. Furthermore, senescent chondrocytes (SnCCs) can release various proinflammatory cytokines, proteolytic enzymes, and other substances known as the senescence-associated secretory phenotype (SASP), allowing them to connect with surrounding cells and induce senesce. Studies have shown that the pharmacological elimination of SnCCs slows the progression of OA and promotes regeneration. Growth differentiation factor 15 (GDF15), a member of the tumor growth factor (TGF) superfamily, has recently been identified as a possible aging biomarker and has been linked to a variety of clinical conditions, including coronary artery disease, diabetes, and multiple cancer types. Thus, we obtained data from a publicly available single-cell sequencing RNA database and observed that GDF15, a critical protein in cellular senescence, is highly expressed in early OA. In addition, GDF15 is implicated in the senescence and modulation of MAPK14 in OA. Tissue and synovial fluid samples obtained from OA patients showed overexpression of GDF15. Next, we treated C20A4 cell lines with interleukin (IL)-1β with or without shGDF15 then removed the conditioned medium, and cultured C20A4 and HUVEC cell lines with the aforementioned media. We observed that C20A4 cells treated with IL-1β exhibited increased GDF15 secretion and that chondrocytes cultured with media derived from IL-1β–treated C20A4 exhibited senescence. HUVEC cell migration and tube formation were enhanced after culturing with IL-1β-treated chondrocyte media; however, decreased HUVEC cell migration and tube formation were noted in HUVEC cells cultured with GDF15-loss media. We tested the potential of inhibiting GDF15 by using a GDF15 neutralizing antibody, GDF15-nAb. GDF15-nAb exerted a similar effect, resulting in the molecular silencing of GDF15 in vivo and in vitro. Our results reveal that GDF15 is a driver of SnCCs and can contribute to OA progression by inducing angiogenesis.

原文英語
文章編號7043
期刊International journal of molecular sciences
23
發行號13
DOIs
出版狀態已發佈 - 7月 1 2022

ASJC Scopus subject areas

  • 催化
  • 分子生物學
  • 光譜
  • 電腦科學應用
  • 物理與理論化學
  • 有機化學
  • 無機化學

指紋

深入研究「Role of GDF15/MAPK14 Axis in Chondrocyte Senescence as a Novel Senomorphic Agent in Osteoarthritis」主題。共同形成了獨特的指紋。

引用此