Role of calcium ions in the positive interaction between TRPA1 and TRPV1 channels in bronchopulmonary sensory neurons

Chun-Chun Hsu, Lu-Yuan Lee

研究成果: 雜誌貢獻文章

13 引文 斯高帕斯(Scopus)

摘要

Both transient receptor potential ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1) receptors are abundantly expressed in bronchopulmonary C-fiber sensory nerves and can be activated by a number of endogenous inflammatory mediators. A recent study has reported a synergistic effect of simultaneous TRPA1 and TRPV1 activations in vagal pulmonary C-fiber afferents in anesthetized rats, but its underlying mechanism was not known. This study aimed to characterize a possible interaction between these two TRP channels and to investigate the potential role of Ca2+ as a mediator of this interaction in isolated rat vagal pulmonary sensory neurons. Using the perforated patch-clamp recording technique, our study demonstrated a distinct positive interaction occurring abruptly between TRPA1 and TRPV1 when they were activated simultaneously by their respective agonists, capsaicin (Cap) and allyl isothiocyanate (AITC), at near-threshold concentrations in these neurons. AITC at this low concentration evoked only minimal or undetectable responses, but it markedly amplified the Cap-evoked current in the same neurons. This potentiating effect was eliminated when either AITC or Cap was replaced by non-TRPA1 and non-TRPV1 chemical activators of these neurons, demonstrating the selectivity of the interaction between these two TRP channels. Furthermore, when Ca2+ was removed from the extracellular solution, the synergistic effect of Cap and AITC on pulmonary sensory neurons was completely abrogated, clearly indicating a critical role of Ca2+ in mediating the action. These results suggest that this TRPA1-TRPV1 interaction may play a part in regulating the sensitivity of pulmonary sensory neurons during airway inflammatory reaction. Copyright © 2015 the American Physiological Society.
原文英語
頁(從 - 到)1533-1543
頁數11
期刊Journal of Applied Physiology
118
發行號12
DOIs
出版狀態已發佈 - 2015
對外發佈Yes

    指紋

引用此