摘要
原文 | 英語 |
---|---|
頁(從 - 到) | 1246-1251 |
頁數 | 6 |
期刊 | Magnetic Resonance in Medicine |
卷 | 73 |
發行號 | 3 |
DOIs | |
出版狀態 | 已發佈 - 2015 |
對外發佈 | 是 |
指紋
深入研究「Robust deep brain stimulation functional MRI procedures in rats and mice using an MR-compatible tungsten microwire electrode」主題。共同形成了獨特的指紋。引用此
- APA
- Standard
- Harvard
- Vancouver
- Author
- BIBTEX
- RIS
Robust deep brain stimulation functional MRI procedures in rats and mice using an MR-compatible tungsten microwire electrode. / Lai, Hsin-Yi; Albaugh, Daniel L.; Kao, Yu-Chieh Jill 等.
於: Magnetic Resonance in Medicine, 卷 73, 編號 3, 2015, p. 1246-1251.研究成果: 雜誌貢獻 › 文章 › 同行評審
}
TY - JOUR
T1 - Robust deep brain stimulation functional MRI procedures in rats and mice using an MR-compatible tungsten microwire electrode
AU - Lai, Hsin-Yi
AU - Albaugh, Daniel L.
AU - Kao, Yu-Chieh Jill
AU - Younce, John Robert
AU - Shih, Yen-Yu
N1 - 被引用次數:2 Export Date: 6 April 2016 CODEN: MRMEE 通訊地址: Shih, Y.-Y.I.; Department of Neurology, Biomedical Research Imaging Center, University of North Carolina, 130 Mason Farm Road, CB 7513, United States 化學物質/CAS: chloralose, 15879-93-3; isoflurane, 26675-46-7; tungsten, 7440-33-7; Biocompatible Materials; Tungsten 參考文獻: Delong, M., Wichmann, T., Deep brain stimulation for movement and other neurologic disorders (2012) Ann N y Acad Sci, 1265, pp. 1-8; Goodman, W.K., Alterman, R.L., Deep brain stimulation for intractable psychiatric disorders (2012) Annu Rev Med, 63, pp. 511-524; Schiefer, T.K., Matsumoto, J.Y., Lee, K.H., Moving forward: Advances in the treatment of movement disorders with deep brain stimulation (2011) Front Integr Neurosci, 5, p. 69; Gradinaru, V., Mogri, M., Thompson, K.R., Henderson, J.M., Deisseroth, K., Optical deconstruction of parkinsonian neural circuitry (2009) Science, 324, pp. 354-359; Li, Q., Ke, Y., Chan, D.C., Qian, Z.M., Yung, K.K., Ko, H., Arbuthnott, G.W., Yung, W.H., Therapeutic deep brain stimulation in Parkinsonian rats directly influences motor cortex (2012) Neuron, 76, pp. 1030-1041; McConnell, G.C., So, R.Q., Hilliard, J.D., Lopomo, P., Grill, W.M., Effective deep brain stimulation suppresses low-frequency network oscillations in the basal ganglia by regularizing neural firing patterns (2012) J Neurosci, 32, pp. 15657-15668; Liu, Y., Postupna, N., Falkenberg, J., Anderson, M.E., High frequency deep brain stimulation: What are the therapeutic mechanisms? (2008) Neurosci Biobehav Rev, 32, pp. 343-351; Albaugh, D.L., Shih, Y.Y., Neural circuit modulation during deep brain stimulation at the subthalamic nucleus for Parkinson's disease: What have we learned from neuroimaging studies? (2014) Brain Connect, 4, pp. 1-14; Yang, P., Chen, Y., Chen, D., Hu, J., Chen, J., Yen, C., Comparison of fMRI BOLD response patterns by electrical stimulation of the ventroposterior complex and medial thalamus of the rat (2013) PloS One, 8, p. e66821; Lai, H.Y., Liao, L.D., Lin, C.T., Hsu, J.H., He, X., Chen, Y.Y., Chang, J.Y., Shih, Y.Y., Design, simulation and experimental validation of a novel flexible neural probe for deep brain stimulation and multichannel recording (2012) J Neural Eng, 9, p. 036001; Shih, Y.Y., Yash, T.V., Rogers, B., Duong TQ. fMRI of deep brain stimulation at the rat ventral posteromedial thalamus (2014) Brain Stimul, 7, pp. 190-193; Adamczak, J.M., Farr, T.D., Seehafer, J.U., Kalthoff, D., Hoehn, M., High field BOLD response to forepaw stimulation in the mouse (2010) Neuroimage, 51, pp. 704-712; Bosshard, S.C., Baltes, C., Wyss, M.T., Mueggler, T., Weber, B., Rudin, M., Assessment of brain responses to innocuous and noxious electrical forepaw stimulation in mice using BOLD fMRI (2010) Pain, 151, pp. 655-663; Ahrens, E.T., Dubowitz, D.J., Peripheral somatosensory fMRI in mouse at 11.7 T (2001) NMR Biomed, 14, pp. 318-324; Nair, G., Duong, T.Q., Echo-planar BOLD fMRI of mice on a narrow-bore 9.4 T magnet (2004) Magn Reson Med, 52, pp. 430-434; Paxinos, G., Watson, C., (2004) The Rat Brain in Stereotaxic Coordinates: 5th Edition, , New York: Academic Press; Shih, Y.Y., Chen, Y.Y., Lai, H.Y., Kao, Y.C., Shyu, B.C., Duong, T.Q., Ultra high-resolution fMRI and electrophysiology of the rat primary somatosensory cortex (2013) Neuroimage, 73, pp. 113-120; Prasad, A., Xue, Q.S., Sankar, V., Nishida, T., Shaw, G., Streit, W.J., Sanchez, J.C., Comprehensive characterization and failure modes of tungsten microwire arrays in chronic neural implants (2012) J Neural Eng, 9, p. 056015; Patrick, E., Orazem, M.E., Sanchez, J.C., Nishida, T., Corrosion of tungsten microelectrodes used in neural recording applications (2011) J Neurosci Methods, 198, pp. 158-171; Zeuthen, T., Tungsten (W) as electrode material: Electrode potential and small-signal impedances (1978) Med Biol Eng Comput, 16, pp. 483-488; Williams, K.A., Magnuson, M., Majeed, W., Laconte, S.M., Peltier, S.J., Hu, X., Keilholz, S.D., Comparison of alpha-chloralose, medetomidine and isoflurane anesthesia for functional connectivity mapping in the rat (2010) Magn Reson Imaging, 28, pp. 995-1003; Krautwald, K., Angenstein, F., Low frequency stimulation of the perforant pathway generates anesthesia-specific variations in neural activity and BOLD responses in the rat dentate gyrus (2012) J Cereb Blood Flow Metab, 32, pp. 291-305; Tsurugizawa, T., Uematsu, A., Uneyama, H., Torii, K., Effects of isoflurane and alpha-chloralose anesthesia on BOLD fMRI responses to ingested L-glutamate in rats (2010) Neuroscience, 165, pp. 244-251; Alonso Bde, C., Makarova, T., Hess, A., On the use of alpha-chloralose for repeated BOLD fMRI measurements in rats (2011) J Neurosci Methods, 195, pp. 236-240; Sommers, M.G., Van Egmond, J., Booij, L.H., Heerschap, A., Isoflurane anesthesia is a valuable alternative for alpha-chloralose anesthesia in the forepaw stimulation model in rats (2009) NMR Biomed, 22, pp. 414-418; Masamoto, K., Kim, T., Fukuda, M., Wang, P., Kim, S.G., Relationship between neural, vascular, and BOLD signals in isoflurane-anesthetized rat somatosensory cortex (2007) Cereb Cortex, 17, pp. 942-950; Keilholz, S.D., Silva, A.C., Raman, M., Merkle, H., Koretsky, A.P., BOLD and CBV-weighted functional magnetic resonance imaging of the rat somatosensory system (2006) Magn Reson Med, 55, pp. 316-324; Kim, T., Masamoto, K., Fukuda, M., Vazquez, A., Kim, S.G., Frequency-dependent neural activity, CBF, and BOLD fMRI to somatosensory stimuli in isoflurane-anesthetized rats (2010) Neuroimage, 52, pp. 224-233; Sanganahalli, B.G., Herman, P., Hyder, F., Frequency-dependent tactile responses in rat brain measured by functional MRI (2008) NMR Biomed, 21, pp. 410-416; Canals, S., Beyerlein, M., Murayama, Y., Logothetis, N.K., Electric stimulation fMRI of the perforant pathway to the rat hippocampus (2008) Magn Reson Imaging, 26, pp. 978-986; Lai, H.-Y., Younce, J.R., Albaugh, D.L., Kao, Y.-C.J., Shih, Y.-Y.I., Functional MRI reveals frequency-dependent responses during deep brain stimulation at the subthalamic nucleus or internal globus pallidus (2014) Neuroimage, 84, pp. 11-18; Kim, S.G., Harel, N., Jin, T., Kim, T., Lee, P., Zhao, F., Cerebral blood volume MRI with intravascular superparamagnetic iron oxide nanoparticles (2013) NMR Biomed, 26, pp. 949-962; Lu, H., Chefer, S., Kurup, P.K., Guillem, K., Vaupel, D.B., Ross, T.J., Moore, A., Peoples, L.L., Stein EA. fMRI response in the medial prefrontal cortex predicts cocaine but not sucrose self-administration history (2012) Neuroimage, 62, pp. 1857-1866; Mueggler, T., Razoux, F., Russig, H., Buehler, A., Franklin, T.B., Baltes, C., Mansuy, I.M., Rudin, M., Mapping of CBV changes in 5-HT(1A) terminal fields by functional MRI in the mouse brain (2011) Eur Neuropsychopharmacol, 21, pp. 344-353; Perles-Barbacaru, T.A., Procissi, D., Demyanenko, A.V., Hall, F.S., Uhl, G.R., Jacobs, R.E., Quantitative pharmacologic MRI: Mapping the cerebral blood volume response to cocaine in dopamine transporter knockout mice (2011) Neuroimage, 55, pp. 622-628
PY - 2015
Y1 - 2015
N2 - Purpose: To develop a series of robust and readily adoptable protocols for the application of deep brain stimulation (DBS)-functional MRI (fMRI) in rodents. Methods: DBS-fMRI procedures were conducted in rat and mouse under varying anesthetic conditions (isoflurane in rat and mouse, α-chloralose in rat). A homemade two-channel tungsten microwire electrode was used to minimize magnetic susceptibility artifacts, and was targeted to the ventral poster-omedial (VPM) thalamus for DBS-fMRI scanning procedures. Results: Compared with a commercially available MR-compatible electrode, the tungsten microwire generated greatly reduced magnetic-susceptibility artifacts. In the rat, VPM-DBS using the microwire electrode resulted in robust positive blood-oxygen- level-dependent signal changes in somatosensory cortex that were relatively independent of anesthetic type. In the mouse, VPM-DBS similarly generated large, positive neurovascular responses in somatosensory cortex that were detected using cerebral blood volume measurements. Conclusion: Collectively, this work describes reasonable and easily adoptable procedures for conducting DBS-fMRI studies in rodent models. The protocols developed herein may be extended to study DBS effects under numerous experimental conditions and at varying stimulation targets. © 2014 Wiley Periodicals, Inc.
AB - Purpose: To develop a series of robust and readily adoptable protocols for the application of deep brain stimulation (DBS)-functional MRI (fMRI) in rodents. Methods: DBS-fMRI procedures were conducted in rat and mouse under varying anesthetic conditions (isoflurane in rat and mouse, α-chloralose in rat). A homemade two-channel tungsten microwire electrode was used to minimize magnetic susceptibility artifacts, and was targeted to the ventral poster-omedial (VPM) thalamus for DBS-fMRI scanning procedures. Results: Compared with a commercially available MR-compatible electrode, the tungsten microwire generated greatly reduced magnetic-susceptibility artifacts. In the rat, VPM-DBS using the microwire electrode resulted in robust positive blood-oxygen- level-dependent signal changes in somatosensory cortex that were relatively independent of anesthetic type. In the mouse, VPM-DBS similarly generated large, positive neurovascular responses in somatosensory cortex that were detected using cerebral blood volume measurements. Conclusion: Collectively, this work describes reasonable and easily adoptable procedures for conducting DBS-fMRI studies in rodent models. The protocols developed herein may be extended to study DBS effects under numerous experimental conditions and at varying stimulation targets. © 2014 Wiley Periodicals, Inc.
KW - Deep brain stimulation
KW - fMRI
KW - Mouse
KW - Rat
KW - Tungsten electrode
KW - chloralose
KW - isoflurane
KW - tungsten
KW - biomaterial
KW - Article
KW - BOLD signal
KW - brain blood volume
KW - brain depth stimulation
KW - controlled study
KW - electrostimulation
KW - functional magnetic resonance imaging
KW - male
KW - microelectrode
KW - mouse
KW - neuroscience
KW - nonhuman
KW - rat
KW - somatosensory cortex
KW - thalamus nucleus
KW - anatomy and histology
KW - animal
KW - brain
KW - device failure analysis
KW - devices
KW - equipment design
KW - evoked response
KW - nuclear magnetic resonance imaging
KW - physiology
KW - reproducibility
KW - sensitivity and specificity
KW - Sprague Dawley rat
KW - synthesis
KW - Animals
KW - Biocompatible Materials
KW - Brain
KW - Deep Brain Stimulation
KW - Equipment Design
KW - Equipment Failure Analysis
KW - Evoked Potentials
KW - Magnetic Resonance Imaging
KW - Male
KW - Microelectrodes
KW - Rats
KW - Rats, Sprague-Dawley
KW - Reproducibility of Results
KW - Sensitivity and Specificity
KW - Tungsten
U2 - 10.1002/mrm.25239
DO - 10.1002/mrm.25239
M3 - Article
VL - 73
SP - 1246
EP - 1251
JO - Magnetic Resonance in Medicine
JF - Magnetic Resonance in Medicine
SN - 0740-3194
IS - 3
ER -