Resistance of a human ovarian cancer line to 5-fluorouracil associated with decreased levels of 5-fluorouracil in DNA

E. Chu, G. M. Lai, S. Zinn, C. J. Allegra

研究成果: 雜誌貢獻文章

27 引文 (Scopus)

摘要

Two human ovarian cancer cell lines were established from a patient before (PEO1) and after (PEO4) the onset of resistance to 5-fluorouracil (5-FU)/cisplatin-based chemotherapy. Using growth inhibition assays, we determined that the PEO4 line was almost 5-fold more resistant to 5-FU than the PEO1 line. The addition of either 1 or 20 μM leucovorin did not enhance the growth-inhibitory effects of 5-FU against the resistant PEO4 line. In characterizing the potential mechanisms of 5-FU resistance, we found no differences in thymidylate synthase activity between the two lines using both the 5-fluoro-2'-deoxyuridine-5'-monophosphate-binding and catalytic assays. A 4-hr exposure to 1 μM 5-FU resulted in greater ternary complex formation in the resistant line, and we observed no differences between the two lines in 5-FU incorporation into RNA. However, a 4-hr exposure to 1 μM [3H]5-FU resulted in a 3-fold decrease in 5-FU accumulation in the DNA of the resistant PEO4 line. Cesium sulfate gradient centrifugation was used to more accurately separate and analyze for DNA-incorporated 5-FU metabolites and confirmed that the absolute level of 5-FU in the DNA of the PEO4 cells was markedly decreased (6.5-fold) compared with that of the sensitive PEO1 cell line. Moreover, time course studies demonstrated that the accumulated 5-FU in the DNA of the PEO4 cells was more rapidly removed compared with that in the PEO1 cells. Our findings suggest that decreased 5-FU levels in DNA, in part due to an enhanced removal from DNA, represent a mechanism by which the human ovarian cancer PEO4 line expresses decreased sensitivity to 5-FU.

原文英語
頁(從 - 到)410-417
頁數8
期刊Molecular Pharmacology
38
發行號3
出版狀態已發佈 - 1990
對外發佈Yes

指紋

Fluorouracil
Ovarian Neoplasms
DNA
Fluorodeoxyuridylate
Cell Line
Thymidylate Synthase
Leucovorin
Growth
Centrifugation
Cisplatin
RNA
Drug Therapy

ASJC Scopus subject areas

  • Pharmacology

引用此文

Resistance of a human ovarian cancer line to 5-fluorouracil associated with decreased levels of 5-fluorouracil in DNA. / Chu, E.; Lai, G. M.; Zinn, S.; Allegra, C. J.

於: Molecular Pharmacology, 卷 38, 編號 3, 1990, p. 410-417.

研究成果: 雜誌貢獻文章

@article{628ab4a456a44e27b2a8fa2609fb8fd9,
title = "Resistance of a human ovarian cancer line to 5-fluorouracil associated with decreased levels of 5-fluorouracil in DNA",
abstract = "Two human ovarian cancer cell lines were established from a patient before (PEO1) and after (PEO4) the onset of resistance to 5-fluorouracil (5-FU)/cisplatin-based chemotherapy. Using growth inhibition assays, we determined that the PEO4 line was almost 5-fold more resistant to 5-FU than the PEO1 line. The addition of either 1 or 20 μM leucovorin did not enhance the growth-inhibitory effects of 5-FU against the resistant PEO4 line. In characterizing the potential mechanisms of 5-FU resistance, we found no differences in thymidylate synthase activity between the two lines using both the 5-fluoro-2'-deoxyuridine-5'-monophosphate-binding and catalytic assays. A 4-hr exposure to 1 μM 5-FU resulted in greater ternary complex formation in the resistant line, and we observed no differences between the two lines in 5-FU incorporation into RNA. However, a 4-hr exposure to 1 μM [3H]5-FU resulted in a 3-fold decrease in 5-FU accumulation in the DNA of the resistant PEO4 line. Cesium sulfate gradient centrifugation was used to more accurately separate and analyze for DNA-incorporated 5-FU metabolites and confirmed that the absolute level of 5-FU in the DNA of the PEO4 cells was markedly decreased (6.5-fold) compared with that of the sensitive PEO1 cell line. Moreover, time course studies demonstrated that the accumulated 5-FU in the DNA of the PEO4 cells was more rapidly removed compared with that in the PEO1 cells. Our findings suggest that decreased 5-FU levels in DNA, in part due to an enhanced removal from DNA, represent a mechanism by which the human ovarian cancer PEO4 line expresses decreased sensitivity to 5-FU.",
author = "E. Chu and Lai, {G. M.} and S. Zinn and Allegra, {C. J.}",
year = "1990",
language = "English",
volume = "38",
pages = "410--417",
journal = "Molecular Pharmacology",
issn = "0026-895X",
publisher = "American Society for Pharmacology and Experimental Therapeutics",
number = "3",

}

TY - JOUR

T1 - Resistance of a human ovarian cancer line to 5-fluorouracil associated with decreased levels of 5-fluorouracil in DNA

AU - Chu, E.

AU - Lai, G. M.

AU - Zinn, S.

AU - Allegra, C. J.

PY - 1990

Y1 - 1990

N2 - Two human ovarian cancer cell lines were established from a patient before (PEO1) and after (PEO4) the onset of resistance to 5-fluorouracil (5-FU)/cisplatin-based chemotherapy. Using growth inhibition assays, we determined that the PEO4 line was almost 5-fold more resistant to 5-FU than the PEO1 line. The addition of either 1 or 20 μM leucovorin did not enhance the growth-inhibitory effects of 5-FU against the resistant PEO4 line. In characterizing the potential mechanisms of 5-FU resistance, we found no differences in thymidylate synthase activity between the two lines using both the 5-fluoro-2'-deoxyuridine-5'-monophosphate-binding and catalytic assays. A 4-hr exposure to 1 μM 5-FU resulted in greater ternary complex formation in the resistant line, and we observed no differences between the two lines in 5-FU incorporation into RNA. However, a 4-hr exposure to 1 μM [3H]5-FU resulted in a 3-fold decrease in 5-FU accumulation in the DNA of the resistant PEO4 line. Cesium sulfate gradient centrifugation was used to more accurately separate and analyze for DNA-incorporated 5-FU metabolites and confirmed that the absolute level of 5-FU in the DNA of the PEO4 cells was markedly decreased (6.5-fold) compared with that of the sensitive PEO1 cell line. Moreover, time course studies demonstrated that the accumulated 5-FU in the DNA of the PEO4 cells was more rapidly removed compared with that in the PEO1 cells. Our findings suggest that decreased 5-FU levels in DNA, in part due to an enhanced removal from DNA, represent a mechanism by which the human ovarian cancer PEO4 line expresses decreased sensitivity to 5-FU.

AB - Two human ovarian cancer cell lines were established from a patient before (PEO1) and after (PEO4) the onset of resistance to 5-fluorouracil (5-FU)/cisplatin-based chemotherapy. Using growth inhibition assays, we determined that the PEO4 line was almost 5-fold more resistant to 5-FU than the PEO1 line. The addition of either 1 or 20 μM leucovorin did not enhance the growth-inhibitory effects of 5-FU against the resistant PEO4 line. In characterizing the potential mechanisms of 5-FU resistance, we found no differences in thymidylate synthase activity between the two lines using both the 5-fluoro-2'-deoxyuridine-5'-monophosphate-binding and catalytic assays. A 4-hr exposure to 1 μM 5-FU resulted in greater ternary complex formation in the resistant line, and we observed no differences between the two lines in 5-FU incorporation into RNA. However, a 4-hr exposure to 1 μM [3H]5-FU resulted in a 3-fold decrease in 5-FU accumulation in the DNA of the resistant PEO4 line. Cesium sulfate gradient centrifugation was used to more accurately separate and analyze for DNA-incorporated 5-FU metabolites and confirmed that the absolute level of 5-FU in the DNA of the PEO4 cells was markedly decreased (6.5-fold) compared with that of the sensitive PEO1 cell line. Moreover, time course studies demonstrated that the accumulated 5-FU in the DNA of the PEO4 cells was more rapidly removed compared with that in the PEO1 cells. Our findings suggest that decreased 5-FU levels in DNA, in part due to an enhanced removal from DNA, represent a mechanism by which the human ovarian cancer PEO4 line expresses decreased sensitivity to 5-FU.

UR - http://www.scopus.com/inward/record.url?scp=0025076221&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0025076221&partnerID=8YFLogxK

M3 - Article

C2 - 2402230

AN - SCOPUS:0025076221

VL - 38

SP - 410

EP - 417

JO - Molecular Pharmacology

JF - Molecular Pharmacology

SN - 0026-895X

IS - 3

ER -