Regulator of G protein signaling 2 (Rgs2) regulates neural crest development through Pparδ-Sox10 cascade

Sheng Jia Lin, Ming Chang Chiang, Hung Yu Shih, Li Sung Hsu, Tu-Hsueh Yeh, Yin Cheng Huang, Ching-Yu Lin, Yi Chuan Cheng

研究成果: 雜誌貢獻文章同行評審

5 引文 斯高帕斯(Scopus)


Neural crest cells are multipotent progenitors that migrate extensively and differentiate into numerous derivatives. The developmental plasticity and migratory ability of neural crest cells render them an attractive model for studying numerous aspects of cell progression. We observed that zebrafish rgs2 was expressed in neural crest cells. Disrupting Rgs2 expression by using a dominant negative rgs2 construct or rgs2 morpholinos reduced GTPase-activating protein activity, induced the formation of neural crest progenitors, increased the proliferation of nonectomesenchymal neural crest cells, and inhibited the formation of ectomesenchymal neural crest derivatives. The transcription of pparda (which encodes Pparδ, a Wnt-activated transcription factor) was upregulated in Rgs2-deficient embryos, and Pparδ inhibition using a selective antagonist in the Rgs2-deficient embryos repaired neural crest defects. Our results clarify the mechanism through which the Rgs2-Pparδ cascade regulates neural crest development; specifically, Pparδ directly binds to the promoter and upregulates the transcription of the neural crest specifier sox10. This study reveals a unique regulatory mechanism, the Rgs2-Pparδ-Sox10 signaling cascade, and defines a key molecular regulator, Rgs2, in neural crest development.
頁(從 - 到)463-474
期刊Biochimica et Biophysica Acta - General Subjects
出版狀態已發佈 - 3月 2017


深入研究「Regulator of G protein signaling 2 (Rgs2) regulates neural crest development through Pparδ-Sox10 cascade」主題。共同形成了獨特的指紋。