摘要
This study established a survival prediction model for liver cancer using data mining technology. The data were collected from the cancer registration database of a medical center in Northern Taiwan between 2004 and 2008. A total of 227 patients were newly diagnosed with liver cancer during this time. With literature review, and expert consultation, nine variables pertaining to liver cancer survival were analyzed using t-test and chi-square test. Six variables showed significant. Artificial neural network (ANN) and classification and regression tree (CART) were adopted as prediction models. The models were tested in three conditions; one variable (clinical stage alone), six significant variables, and all nine variables (significant and non significant). 5-year survival was the output prediction. The results showed that the ANN model with nine input variables was superior predictor of survival (p#60;0.001). The area under receiver operating characteristic curve (AUC) was 0.915, 0.87, 0.88, and 0.87 for accuracy, sensitivity, and specificity respectively. The ANN model is significant more accurate than CART model when predict survival for liver cancer and provide patients information for understanding the treatment outcomes.
原文 | 英語 |
---|---|
主出版物標題 | Proceedings - 2011 7th International Conference on Natural Computation, ICNC 2011 |
頁面 | 811-815 |
頁數 | 5 |
卷 | 2 |
DOIs | |
出版狀態 | 已發佈 - 2011 |
事件 | 2011 7th International Conference on Natural Computation, ICNC 2011 - Shanghai, 中国 持續時間: 七月 26 2011 → 七月 28 2011 |
其他
其他 | 2011 7th International Conference on Natural Computation, ICNC 2011 |
---|---|
國家 | 中国 |
城市 | Shanghai |
期間 | 7/26/11 → 7/28/11 |
ASJC Scopus subject areas
- Computational Theory and Mathematics
- Neuroscience(all)