Photodynamic inactivation of chlorin e6-loaded CTAB-liposomes against Candida albicans

Yu Tsai Yang, Hsiung-Fei Chien, Po Han Chang, Y. C. Chen, Michael Jay, Tsui-Min Tsai, Chin Tin Chen

研究成果: 雜誌貢獻文章同行評審

35 引文 斯高帕斯(Scopus)


Background and Objectives Antimicrobial photodynamic inactivation (PDI) is a promising therapeutic modality for the treatment of local infections. To increase the efficacy of PDI, chlorine e6 (Ce6) was encapsulated in cationic CTAB-liposomes composed of various ratios of dimyristoyl-sn-glycero- phosphatidylcholine (DMPC) and the cationic surfactant, cetyltrimethyl ammonium bromide (CTAB). The PDI efficacy of the liposomal-Ce6 was assessed in vitro against susceptible and drug-resistant clinical isolates of Candida albicans (C. albicans) as well as in infected burn wounds. Study Design/Materials and Methods Ce6 was encapsulated in CTAB-liposomes by the film hydration method. Particle size distribution and zeta potential of the cationic liposomes were measured using a Zetasizer Nano-ZS. UV-visible spectra were used to measure lipid/Ce6 (L/C) ratio and drug entrapment efficiency while differential scanning calorimetry (DSC) was used to study the thermotropic behavior of DMPC liposomes upon CTAB addition. In vivo PDI efficacy was carried out in an infected burn wound using a rat model. Results The increase in zeta potential and a shift in the phase transition temperature (Tm) upon CTAB addition confirmed its entrapment within the lipid bilayers of the liposome. Meanwhile, the CTAB addition did not affect the Ce6 entrapment efficiency and physical attributes of the liposomes. In vitro studies showed that the PDI effect of the Ce6-loaded CTAB-liposomes was dependent on the lipid to Ce6 molar ratio (L/C), particle size and the concentration of CTAB in the liposomes. The lower L/C ratio and smaller liposomes exerted significantly higher PDI effects. In addition, an increase in the CTAB to lipid ratio led to a significant increase in the PDI effect of Ce6 against susceptible and drug-resistant clinical isolates of C. albicans after light illumination. Conclusions Our results indicate that a low L/C ratio, high positive charge, and small particle size of CTAB-liposomes significantly enhances their PDI efficacy against C. albicans.
頁(從 - 到)175-185
期刊Lasers in Surgery and Medicine
出版狀態已發佈 - 3月 2013

ASJC Scopus subject areas

  • 手術
  • 皮膚科


深入研究「Photodynamic inactivation of chlorin e6-loaded CTAB-liposomes against Candida albicans」主題。共同形成了獨特的指紋。