PARK14 (D331Y) PLA2G6 Causes Early-Onset Degeneration of Substantia Nigra Dopaminergic Neurons by Inducing Mitochondrial Dysfunction, ER Stress, Mitophagy Impairment and Transcriptional Dysregulation in a Knockin Mouse Model

Ching Chi Chiu, Chin Song Lu, Yi Hsin Weng, Ying Ling Chen, Ying Zu Huang, Rou Shayn Chen, Yi Chuan Cheng, Yin Cheng Huang, Yu Chuan Liu, Szu Chia Lai, Kun Jun Lin, Yan Wei Lin, Yu Jie Chen, Chao Lang Chen, Tu Hsueh Yeh, Hung Li Wang

研究成果: 雜誌貢獻文章

5 引文 斯高帕斯(Scopus)

摘要

PARK14 patients with homozygous (D331Y) PLA2G6 mutation display motor deficits of pure early-onset Parkinson’s disease (PD). The aim of this study is to investigate the pathogenic mechanism of mutant (D331Y) PLA2G6-induced PD. We generated knockin (KI) mouse model of PARK14 harboring homozygous (D331Y) PLA2G6 mutation. Then, we investigated neuropathological and neurological phenotypes of PLA2G6D331Y/D331Y KI mice and molecular pathogenic mechanisms of (D331Y) PLA2G6-induced degeneration of substantia nigra (SN) dopaminergic neurons. Six-or nine-month-old PLA2G6D331Y/D331Y KI mice displayed early-onset cell death of SNpc dopaminergic neurons. Lewy body pathology was found in the SN of PLA2G6D331Y/D331Y mice. Six-or nine-month-old PLA2G6D331Y/D331Y KI mice exhibited early-onset parkinsonism phenotypes. Disrupted cristae of mitochondria were found in SNpc dopaminergic neurons of PLA2G6D331Y/D331Y mice. PLA2G6D331Y/D331Y mice displayed mitochondrial dysfunction and upregulated ROS production, which may lead to activation of apoptotic cascade. Upregulated protein levels of Grp78, IRE1, PERK, and CHOP, which are involved in activation of ER stress, were found in the SN of PLA2G6D331Y/D331Y mice. Protein expression of mitophagic proteins, including parkin and BNIP3, was downregulated in the SN of PLA2G6D331Y/D331Y mice, suggesting that (D331Y) PLA2G6 mutation causes mitophagy dysfunction. In the SN of PLA2G6D331Y/D331Y mice, mRNA levels of eight genes that are involved in neuroprotection/neurogenesis were decreased, while mRNA levels of two genes that promote apoptotic death were increased. Our results suggest that PARK14 (D331Y) PLA2G6 mutation causes degeneration of SNpc dopaminergic neurons by causing mitochondrial dysfunction, elevated ER stress, mitophagy impairment, and transcriptional abnormality.
原文英語
期刊Molecular Neurobiology
DOIs
出版狀態接受/付印 - 一月 1 2018

    指紋

ASJC Scopus subject areas

  • Neuroscience (miscellaneous)
  • Neurology
  • Cellular and Molecular Neuroscience

引用此

Chiu, C. C., Lu, C. S., Weng, Y. H., Chen, Y. L., Huang, Y. Z., Chen, R. S., Cheng, Y. C., Huang, Y. C., Liu, Y. C., Lai, S. C., Lin, K. J., Lin, Y. W., Chen, Y. J., Chen, C. L., Yeh, T. H., & Wang, H. L. (認可的出版社/出版中). PARK14 (D331Y) PLA2G6 Causes Early-Onset Degeneration of Substantia Nigra Dopaminergic Neurons by Inducing Mitochondrial Dysfunction, ER Stress, Mitophagy Impairment and Transcriptional Dysregulation in a Knockin Mouse Model. Molecular Neurobiology. https://doi.org/10.1007/s12035-018-1118-5