Optimal combination of band-pass filters for theanine content prediction using near-infrared spectroscopy

Pauline Ong, Suming Chen, Chao Yin Tsai, Yung Kun Chuang

研究成果: 雜誌貢獻文章同行評審

摘要

The commonly used spectral variable selection methods in near-infrared (NIR) spectroscopy were more theoretical and difficult to put into practice, due to a large number of optical filters with extremely narrow bandwidth at the desired wavelength was required for the spectral acquisition. In this study, a method of optimally selecting a set of the band-pass filter (BPF) to reduce the dimensionality of the spectral data was proposed and subsequently applied to the determination of theanine content in oolong tea. By utilizing 4 BPFs, the developed multiple linear regression, support vector regression and Gaussian process regression models produced R-squared values of 0.7971, 0.9036 and 0.9080, respectively, for prediction, indicating the beneficial potential of the proposed method for accurate prediction of the analytes with the lower cost of spectral acquisition in real practice.

原文英語
文章編號103701
期刊Infrared Physics and Technology
115
DOIs
出版狀態已發佈 - 六月 2021

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Atomic and Molecular Physics, and Optics
  • Condensed Matter Physics

指紋 深入研究「Optimal combination of band-pass filters for theanine content prediction using near-infrared spectroscopy」主題。共同形成了獨特的指紋。

引用此