On a Berry‐Esséen theorem for a Studentized jackknife L‐estimate

Kuang‐Fu ‐F Cheng

研究成果: 雜誌貢獻文章

1 引文 斯高帕斯(Scopus)

摘要

Consider a linear function of order statistics (“L‐estimate”) which can be expressed as a statistical function T(Fn) based on the sample cumulative distribution function Fn. Let T*(Fn) be the corresponding jackknifed version of T(Fn), and let V2 n be the jackknife estimate of the asymptotic variance of n 1/2T(Fn) or n 1/2T*(Fn). In this paper, we provide a Berry‐Esséen rate of the normal approximation for a Studentized jackknife L‐estimate n1/2[T*(Fn) ‐ T(F)]/Vn, where T(F) is the basic functional associated with the L‐estimate.

原文英語
頁(從 - 到)113-119
頁數7
期刊Canadian Journal of Statistics
10
發行號2
DOIs
出版狀態已發佈 - 1982
對外發佈Yes

ASJC Scopus subject areas

  • Statistics and Probability
  • Statistics, Probability and Uncertainty

指紋 深入研究「On a Berry‐Esséen theorem for a Studentized jackknife L‐estimate」主題。共同形成了獨特的指紋。

  • 引用此