Novel histone deacetylase inhibitor MPT0G009 induces cell apoptosis and synergistic anticancer activity with tumor necrosis factor-related apoptosis-inducing ligand against human hepatocellular carcinoma

Mei-Chuan Chen, Hui-Hsuan Huang, Chin-Yu Lai, Yi-Jyun Lin, Jing-Ping Liou, Mei-Jung Lai, Yu-Hsuan Li, Che-Ming Teng, Chia-Ron Yang

研究成果: 雜誌貢獻文章

14 引文 (Scopus)

摘要

Hepatocellular carcinoma (HCC) is a frequent cause of cancer-related death; therefore, more effective anticancer therapies for the treatment of HCC are needed. Histone deacetylase (HDAC) inhibitors serve as promising anticancer drugs because they can induce cell growth arrest and apoptosis. We previously reported that 3-[1-(4-methoxybenzenesulfonyl)-2,3-dihydro-1H-indol-5-yl]-N-hydroxyacrylamide (MPT0G009)-a novel 1-arylsulfonyl-5-(N-hydroxyacrylamide)indolines compound-demonstrated potent pan-HDAC inhibition and anti-inflammatory effects. In this study, we evaluated the anti-HCC activity of MPT0G009 in vitro and in vivo. Growth inhibition, apoptosis, and inhibited HDAC activity induced by MPT0G009 were more potent than a marketed HDAC inhibitor SAHA (Vorinostat). Furthermore, MPT0G009-induced apoptosis of Hep3B cells was characterized by an increase in apoptotic (sub-G1) population, loss of mitochondrial membrane potential, activation of caspase cascade, increased levels of pro-apoptotic protein (Bim), and decreased levels of anti-apoptotic proteins (Bcl-2, Bcl-xL, and FLICE-inhibitory protein); the downregulation FLIP by MPT0G009 is mediated through proteasome-mediated degradation and transcriptional suppression. In addition, combinations of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) with lower concentrations (0.1 μM) of MPT0G009 were synergistic in cell growth inhibition and apoptosis in HCC cells. In the in vivo model, MPT0G009 markedly reduced Hep3B xenograft tumor volume, inhibited HDAC activities, and induced apoptosis in the Hep3B xenografts. Our results demonstrate that MPT0G009 is a potential new candidate drug for HCC therapy.
原文英語
頁(從 - 到)402-17
頁數16
期刊Oncotarget
7
發行號1
DOIs
出版狀態已發佈 - 一月 5 2016

指紋

Histone Deacetylase Inhibitors
Hepatocellular Carcinoma
Tumor Necrosis Factor-alpha
Apoptosis
Ligands
Histone Deacetylases
Apoptosis Regulatory Proteins
Heterografts
Growth
CASP8 and FADD-Like Apoptosis Regulating Protein
3-(1-(4-methoxybenzenesulfonyl)-2,3-dihydro-1H-indol-5-yl)-N-hydroxyacrylamide
Mitochondrial Membrane Potential
Proteasome Endopeptidase Complex
Caspases
Tumor Burden
Pharmaceutical Preparations
Anti-Inflammatory Agents
Down-Regulation

引用此文

Novel histone deacetylase inhibitor MPT0G009 induces cell apoptosis and synergistic anticancer activity with tumor necrosis factor-related apoptosis-inducing ligand against human hepatocellular carcinoma. / Chen, Mei-Chuan; Huang, Hui-Hsuan; Lai, Chin-Yu; Lin, Yi-Jyun; Liou, Jing-Ping; Lai, Mei-Jung; Li, Yu-Hsuan; Teng, Che-Ming; Yang, Chia-Ron.

於: Oncotarget, 卷 7, 編號 1, 05.01.2016, p. 402-17.

研究成果: 雜誌貢獻文章

@article{7470152a8eb9495bac03d81778ad63ea,
title = "Novel histone deacetylase inhibitor MPT0G009 induces cell apoptosis and synergistic anticancer activity with tumor necrosis factor-related apoptosis-inducing ligand against human hepatocellular carcinoma",
abstract = "Hepatocellular carcinoma (HCC) is a frequent cause of cancer-related death; therefore, more effective anticancer therapies for the treatment of HCC are needed. Histone deacetylase (HDAC) inhibitors serve as promising anticancer drugs because they can induce cell growth arrest and apoptosis. We previously reported that 3-[1-(4-methoxybenzenesulfonyl)-2,3-dihydro-1H-indol-5-yl]-N-hydroxyacrylamide (MPT0G009)-a novel 1-arylsulfonyl-5-(N-hydroxyacrylamide)indolines compound-demonstrated potent pan-HDAC inhibition and anti-inflammatory effects. In this study, we evaluated the anti-HCC activity of MPT0G009 in vitro and in vivo. Growth inhibition, apoptosis, and inhibited HDAC activity induced by MPT0G009 were more potent than a marketed HDAC inhibitor SAHA (Vorinostat). Furthermore, MPT0G009-induced apoptosis of Hep3B cells was characterized by an increase in apoptotic (sub-G1) population, loss of mitochondrial membrane potential, activation of caspase cascade, increased levels of pro-apoptotic protein (Bim), and decreased levels of anti-apoptotic proteins (Bcl-2, Bcl-xL, and FLICE-inhibitory protein); the downregulation FLIP by MPT0G009 is mediated through proteasome-mediated degradation and transcriptional suppression. In addition, combinations of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) with lower concentrations (0.1 μM) of MPT0G009 were synergistic in cell growth inhibition and apoptosis in HCC cells. In the in vivo model, MPT0G009 markedly reduced Hep3B xenograft tumor volume, inhibited HDAC activities, and induced apoptosis in the Hep3B xenografts. Our results demonstrate that MPT0G009 is a potential new candidate drug for HCC therapy.",
keywords = "Journal Article, Research Support, Non-U.S. Gov't",
author = "Mei-Chuan Chen and Hui-Hsuan Huang and Chin-Yu Lai and Yi-Jyun Lin and Jing-Ping Liou and Mei-Jung Lai and Yu-Hsuan Li and Che-Ming Teng and Chia-Ron Yang",
year = "2016",
month = "1",
day = "5",
doi = "10.18632/oncotarget.6352",
language = "English",
volume = "7",
pages = "402--17",
journal = "Oncotarget",
issn = "1949-2553",
publisher = "Impact Journals LLC",
number = "1",

}

TY - JOUR

T1 - Novel histone deacetylase inhibitor MPT0G009 induces cell apoptosis and synergistic anticancer activity with tumor necrosis factor-related apoptosis-inducing ligand against human hepatocellular carcinoma

AU - Chen, Mei-Chuan

AU - Huang, Hui-Hsuan

AU - Lai, Chin-Yu

AU - Lin, Yi-Jyun

AU - Liou, Jing-Ping

AU - Lai, Mei-Jung

AU - Li, Yu-Hsuan

AU - Teng, Che-Ming

AU - Yang, Chia-Ron

PY - 2016/1/5

Y1 - 2016/1/5

N2 - Hepatocellular carcinoma (HCC) is a frequent cause of cancer-related death; therefore, more effective anticancer therapies for the treatment of HCC are needed. Histone deacetylase (HDAC) inhibitors serve as promising anticancer drugs because they can induce cell growth arrest and apoptosis. We previously reported that 3-[1-(4-methoxybenzenesulfonyl)-2,3-dihydro-1H-indol-5-yl]-N-hydroxyacrylamide (MPT0G009)-a novel 1-arylsulfonyl-5-(N-hydroxyacrylamide)indolines compound-demonstrated potent pan-HDAC inhibition and anti-inflammatory effects. In this study, we evaluated the anti-HCC activity of MPT0G009 in vitro and in vivo. Growth inhibition, apoptosis, and inhibited HDAC activity induced by MPT0G009 were more potent than a marketed HDAC inhibitor SAHA (Vorinostat). Furthermore, MPT0G009-induced apoptosis of Hep3B cells was characterized by an increase in apoptotic (sub-G1) population, loss of mitochondrial membrane potential, activation of caspase cascade, increased levels of pro-apoptotic protein (Bim), and decreased levels of anti-apoptotic proteins (Bcl-2, Bcl-xL, and FLICE-inhibitory protein); the downregulation FLIP by MPT0G009 is mediated through proteasome-mediated degradation and transcriptional suppression. In addition, combinations of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) with lower concentrations (0.1 μM) of MPT0G009 were synergistic in cell growth inhibition and apoptosis in HCC cells. In the in vivo model, MPT0G009 markedly reduced Hep3B xenograft tumor volume, inhibited HDAC activities, and induced apoptosis in the Hep3B xenografts. Our results demonstrate that MPT0G009 is a potential new candidate drug for HCC therapy.

AB - Hepatocellular carcinoma (HCC) is a frequent cause of cancer-related death; therefore, more effective anticancer therapies for the treatment of HCC are needed. Histone deacetylase (HDAC) inhibitors serve as promising anticancer drugs because they can induce cell growth arrest and apoptosis. We previously reported that 3-[1-(4-methoxybenzenesulfonyl)-2,3-dihydro-1H-indol-5-yl]-N-hydroxyacrylamide (MPT0G009)-a novel 1-arylsulfonyl-5-(N-hydroxyacrylamide)indolines compound-demonstrated potent pan-HDAC inhibition and anti-inflammatory effects. In this study, we evaluated the anti-HCC activity of MPT0G009 in vitro and in vivo. Growth inhibition, apoptosis, and inhibited HDAC activity induced by MPT0G009 were more potent than a marketed HDAC inhibitor SAHA (Vorinostat). Furthermore, MPT0G009-induced apoptosis of Hep3B cells was characterized by an increase in apoptotic (sub-G1) population, loss of mitochondrial membrane potential, activation of caspase cascade, increased levels of pro-apoptotic protein (Bim), and decreased levels of anti-apoptotic proteins (Bcl-2, Bcl-xL, and FLICE-inhibitory protein); the downregulation FLIP by MPT0G009 is mediated through proteasome-mediated degradation and transcriptional suppression. In addition, combinations of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) with lower concentrations (0.1 μM) of MPT0G009 were synergistic in cell growth inhibition and apoptosis in HCC cells. In the in vivo model, MPT0G009 markedly reduced Hep3B xenograft tumor volume, inhibited HDAC activities, and induced apoptosis in the Hep3B xenografts. Our results demonstrate that MPT0G009 is a potential new candidate drug for HCC therapy.

KW - Journal Article

KW - Research Support, Non-U.S. Gov't

UR - https://reurl.cc/0ZWXo

UR - https://reurl.cc/WvO1O

U2 - 10.18632/oncotarget.6352

DO - 10.18632/oncotarget.6352

M3 - Article

C2 - 26587975

VL - 7

SP - 402

EP - 417

JO - Oncotarget

JF - Oncotarget

SN - 1949-2553

IS - 1

ER -