Nitric oxide induces osteoblast apoptosis through a mitochondria-dependent pathway

研究成果: 雜誌貢獻文章同行評審

29 引文 斯高帕斯(Scopus)

摘要

Osteoblasts contribute to bone remodeling. Nitric oxide can regulate osteoblast activities. In this study, we attempted to evaluate the pathophysiological effects of nitric oxide on osteoblasts and its possible mechanism using neonatal rat calvarial osteoblasts as the experimental model. Exposure of osteoblasts to sodium nitroprusside, a nitric oxide donor, decreased alkaline phosphatase activities and cell viability in a concentration- and time-dependent manner. Apoptotic analysis revealed that sodium nitroprusside time-dependently increased the percentages of osteoblasts undergoing apoptosis. Administration of sodium nitroprusside reduced the mitochondrial membrane potential of osteoblasts. In parallel with the mitochondrial dysfunction, levels of intracellular reactive oxygen species and cytochrome c were significantly elevated following sodium nitroprusside administration. Exposure of osteoblasts to sodium nitroprusside significantly increased caspase-3 activity. Results of this study show that nitric oxide, decomposed from sodium nitroprusside, can induce osteoblast apoptosis through a mitochondrion-dependent cascade that causes mitochondrial dysfunction, release of intracellular reactive oxygen species and cytochrome c from mitochondria to cytoplasm, and activation of caspase-3.
原文英語
頁(從 - 到)460-470
頁數11
期刊Annals of the New York Academy of Sciences
1042
DOIs
出版狀態已發佈 - 2005

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • History and Philosophy of Science

指紋 深入研究「Nitric oxide induces osteoblast apoptosis through a mitochondria-dependent pathway」主題。共同形成了獨特的指紋。

引用此