Neurotensin-Conjugated Reduced Graphene Oxide with Multi-Stage Near-Infrared-Triggered Synergic Targeted Neuron Gene Transfection In Vitro and In Vivo for Neurodegenerative Disease Therapy

Tsung Ying Hsieh, Wei Chen Huang, Yi Da Kang, Chao Yi Chu, Wen Lin Liao, You Yin Chen, San Yuan Chen

研究成果: 雜誌貢獻文章

18 引文 斯高帕斯(Scopus)

摘要

Delivery efficiency with gene transfection is a pivotal point in achieving maximized therapeutic efficacy and has been an important challenge with central nervous system (CNS) diseases. In this study, neurotensin (NT, a neuro-specific peptide)-conjugated polyethylenimine (PEI)-modified reduced graphene oxide (rGO) nanoparticles with precisely controlled two-stage near-infrared (NIR)-laser photothermal treatment to enhance the ability to target neurons and achieve high gene transfection in neurons. First-stage NIR laser irradiation on the cells with nanoparticles attached on the surface can increase the permeability of the cell membrane, resulting in an apparent increase in cellular uptake compared to untreated cells. In addition, second-stage NIR laser irradiation on the cells with nanoparticles inside can further induce endo/lysosomal cavitation, which not only helps nanoparticles escape from endo/lysosomes but also prevents plasmid DNA (pDNA) from being digested by DNase I. At least double pDNA amount can be released from rGO-PEI-NT/pDNA under NIR laser trigger release compared to natural release. Moreover, in vitro differentiated PC-12 cell and in vivo mice (C57BL/6) brain transfection experiments have demonstrated the highest transfection efficiency occurring when NT modification is combined with external multi-stage stimuli-responsive NIR laser treatment. The combination of neuro-specific targeting peptide and external NIR-laser-triggered aid provides a nanoplatform for gene therapy in CNS diseases.
原文英語
頁(從 - 到)3016-3026
頁數11
期刊Advanced healthcare materials
5
發行號23
DOIs
出版狀態已發佈 - 十二月 7 2016
對外發佈Yes

ASJC Scopus subject areas

  • Biomaterials
  • Biomedical Engineering
  • Pharmaceutical Science

指紋 深入研究「Neurotensin-Conjugated Reduced Graphene Oxide with Multi-Stage Near-Infrared-Triggered Synergic Targeted Neuron Gene Transfection In Vitro and In Vivo for Neurodegenerative Disease Therapy」主題。共同形成了獨特的指紋。

  • 引用此