摘要

This study is aimed at establishing a neural network and fuzzy feedback control FES system used for adjusting the optimum electrical stimulating current to control the motion of an ankle joint. The proposed method further improves the drop-foot problem existing in hemiplegia patients. The proposed system includes both hardware and software. The hardware system determines the patient's ankle joint angle using a position sensor located in the patient's affected side. This sensor stimulates the tibialis anterior with an electrical stimulator that induces the dorsiflexion action and achieves the ideal ankle joint trace motion. The software system estimates the stimulating current using a neural network. The fuzzy controller solves the nonlinear problem by compensating the motion trace errors between the neural network control and actual system. The control qualities of various controllers for four subjects were compared in the clinical test. It was found that both the root mean square error and the mean error were minimal when using the neural network and fuzzy controller. The drop-foot problem in hemiplegic's locomotion was effectively improved by incorporating the neural network and fuzzy controller with the functional electrical simulator.

原文英語
頁(從 - 到)32-38
頁數7
期刊Journal of Medical Engineering and Technology
28
發行號1
DOIs
出版狀態已發佈 - 一月 2004

ASJC Scopus subject areas

  • 生物醫學工程
  • 健康資訊學
  • 健康資訊管理

指紋

深入研究「Neural network and fuzzy control in FES-assisted locomotion for the hemiplegic」主題。共同形成了獨特的指紋。

引用此