MR image segmentation using a power transformation approach

Juin Der Lee, Hong Ren Su, Philip E. Cheng, Michelle Liou, John A D Aston, Arthur C. Tsai, Cheng Yu Chen

研究成果: 雜誌貢獻文章同行評審

49 引文 斯高帕斯(Scopus)

摘要

This study proposes a segmentation method for brain MR images using a distribution transformation approach. The method extends traditional Gaussian mixtures expectation-maximization segmentation to a power transformed version of mixed intensity distributions, which includes Gaussian mixtures as a special case. As MR intensities tend to exhibit non-Gaussianity due to partial volume effects, the proposed method is designed to fit non-Gaussian tissue intensity distributions. One advantage of the method is that it is intuitively appealing and computationally simple. To avoid performance degradation caused by intensity inhomogeneity, different methods for correcting bias fields were applied prior to image segmentation, and their correction effects on the segmentation results were examined in the empirical study. The partitions of brain tissues (i.e., gray and white matter) resulting from the method were validated and evaluated against manual segmentation results based on 38 real T1-weighted image volumes from the internet brain segmentation repository, and 18 simulated image volumes from Brain Web. The Jaccard and Dice similarity indexes were computed to evaluate the performance of the proposed approach relative to the expert segmentations. Empirical results suggested that the proposed segmentation method yielded higher similarity measures for both gray matter and white matter as compared with those based on the traditional segmentation using the Gaussian mixtures approach.
原文英語
文章編號4752750
頁(從 - 到)894-905
頁數12
期刊IEEE Transactions on Medical Imaging
28
發行號6
DOIs
出版狀態已發佈 - 六月 2009
對外發佈

ASJC Scopus subject areas

  • 電氣與電子工程
  • 電腦科學應用
  • 放射與超音波技術
  • 軟體

指紋

深入研究「MR image segmentation using a power transformation approach」主題。共同形成了獨特的指紋。

引用此