摘要

COVID-19 has become a severe infectious disease and has caused high morbidity and mortality worldwide. Restriction rules such as quarantine and city lockdown have been implemented to mitigate the spread of infection, leading to significant economic impacts. Fortunately, development and inoculation of COVID-19 vaccines are being conducted on an unprecedented scale. The effectiveness of vaccines raises a hope that city lockdown might not be necessary in the presence of ongoing vaccination, thereby minimizing economic loss. The question, however, is how fast and what type of vaccines should be inoculated to control the disease without limiting economic activity. Here, we set up a simulation scenario of COVID-19 outbreak in a modest city with a population of 2.5 million. The basic reproduction number (R0) was ranging from 1.0 to 5.5. Vaccination rates at 1000/day, 10,000/day and 100,000/day with two types of vaccine (effectiveness v = 51% and 89%) were given. The results indicated that R0 was a critical factor. Neither high vaccination rate (1000 persons/day) nor high-end vaccine (v = 89%) could control the disease when the scenario was at R0 = 5.5. Unless an extremely high vaccination rate was given (>4% of the entire population/per day), no significant difference was found between two types of vaccine. With the population scaled to 25 million, the required vaccination rate was >1,000,000/day, a quite unrealistic number. Nevertheless, with a slight reduction of R0 from 5 to 3.5, a significant impact of vaccine inoculation on disease control was observed. Thus, our study raised the importance of estimating transmission dynamics of COVID-19 in a city before determining the subsequent policy.
原文英語
文章編號1245
期刊Healthcare (Switzerland)
9
發行號10
DOIs
出版狀態已發佈 - 十月 2021

ASJC Scopus subject areas

  • 健康資訊學
  • 健康政策
  • 健康資訊管理
  • 領導和管理

指紋

深入研究「Modeling-based estimate of the vaccination rate, lockdown rules and covid-19」主題。共同形成了獨特的指紋。

引用此