TY - JOUR
T1 - MnSOD overexpression confers cisplatin resistance in lung adenocarcinoma via the NF-κB/Snail/Bcl-2 pathway
AU - Chen, Po Ming
AU - Cheng, Ya Wen
AU - Wu, Tzu Chin
AU - Chen, Chih Yi
AU - Lee, Huei
PY - 2015
Y1 - 2015
N2 - Manganese superoxide dismutase (MnSOD) has been shown to be associated with doxorubicin resistance in gastric cancer cells, but the underlying mechanism of MnSOD in drug resistance remains unclear. A recent study indicated that NF-κB activation by MnSOD promoted tumor malignancy in lung adenocarcinoma. Therefore, we hypothesized that MnSOD-mediated NF-κB activation might confer cisplatin resistance in lung adenocarcinoma via the NF-κB/Bcl-2/Snail pathway. Here, the inhibition concentration of cisplatin with 50% cell viability (IC50) was positively correlated with MnSOD expression and its activity in a panel of lung adenocarcinoma cells. The IC50 value was markedly increased and decreased by MnSOD overexpression and knockdown, respectively, in lung cancer cells. Mechanistically, an increase in Bcl-2 by MnSOD-mediated NF-κB activation confers greater cisplatin resistance than cIAP2, Bcl-xL, Mcl-1, and Snail. MnSOD-mediated cisplatin resistance can be overcome by a Bcl-2 antagonist (ABT-199) or IKKβ inhibitor (curcumin) in cells and xenograft tumors. MnSOD expression was positively correlated with nuclear p65 protein and Bcl-2 mRNA expression in tumors from patients with lung adenocarcinomas. A retrospective study indicated that it was more common for MnSOD-positive, nuclear p65-positive, or high Bcl-2 mRNA tumors to have an unfavorable response to cisplatin-based chemotherapy than their counterparts. Therefore, we suggest that ABT-199 or curcumin may be potentially useful to improve tumor regression and chemotherapeutic response in patients with MnSOD/Bcl-2-positive tumors.
AB - Manganese superoxide dismutase (MnSOD) has been shown to be associated with doxorubicin resistance in gastric cancer cells, but the underlying mechanism of MnSOD in drug resistance remains unclear. A recent study indicated that NF-κB activation by MnSOD promoted tumor malignancy in lung adenocarcinoma. Therefore, we hypothesized that MnSOD-mediated NF-κB activation might confer cisplatin resistance in lung adenocarcinoma via the NF-κB/Bcl-2/Snail pathway. Here, the inhibition concentration of cisplatin with 50% cell viability (IC50) was positively correlated with MnSOD expression and its activity in a panel of lung adenocarcinoma cells. The IC50 value was markedly increased and decreased by MnSOD overexpression and knockdown, respectively, in lung cancer cells. Mechanistically, an increase in Bcl-2 by MnSOD-mediated NF-κB activation confers greater cisplatin resistance than cIAP2, Bcl-xL, Mcl-1, and Snail. MnSOD-mediated cisplatin resistance can be overcome by a Bcl-2 antagonist (ABT-199) or IKKβ inhibitor (curcumin) in cells and xenograft tumors. MnSOD expression was positively correlated with nuclear p65 protein and Bcl-2 mRNA expression in tumors from patients with lung adenocarcinomas. A retrospective study indicated that it was more common for MnSOD-positive, nuclear p65-positive, or high Bcl-2 mRNA tumors to have an unfavorable response to cisplatin-based chemotherapy than their counterparts. Therefore, we suggest that ABT-199 or curcumin may be potentially useful to improve tumor regression and chemotherapeutic response in patients with MnSOD/Bcl-2-positive tumors.
KW - Cisplatin
KW - Free radicals
KW - IKKβ/NF-κb
KW - Lung adenocarcinoma
KW - MnSOD
UR - http://www.scopus.com/inward/record.url?scp=84919883453&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84919883453&partnerID=8YFLogxK
U2 - 10.1016/j.freeradbiomed.2014.12.001
DO - 10.1016/j.freeradbiomed.2014.12.001
M3 - Article
C2 - 25499851
AN - SCOPUS:84919883453
VL - 79
SP - 127
EP - 137
JO - Free Radical Biology and Medicine
JF - Free Radical Biology and Medicine
SN - 0891-5849
ER -