Lithium-ion migration in layered Li1.06Ni0.5Co0.2Mn0.3O2 cathode materials synthesized at different temperatures

Zi Zhen Xu, Yi Jie Gu, Hong Quan Liu, Yun Bo Chen, Meng Chang Lin

研究成果: 雜誌貢獻文章同行評審

1 引文 斯高帕斯(Scopus)

摘要

We examined the effects of synthesis temperature on the structural and electrochemical properties of layered Li1.06Ni0.5Co0.2Mn0.3O2 cathode materials synthesized by co-precipitation. Scanning electron microscopy showed that a higher synthesis temperature resulted in a bigger primary particle size. Rietveld refinement revealed that the content of nickel ions at the 3b site decreased from 0.041 to 0.038 and subsequently increased to 0.064 as synthesis temperature rose from 800 to 980 °C. The incircle/circumcircle radii of the tetrahedral sites providing space for lithium-ion migration increased gradually with synthesis temperature. The Li1.06Ni0.5Co0.2Mn0.3O2 sample synthesized at 920 °C displayed the optimal electrochemical performance, delivering a discharge capacity of 181.6 mAhg-1 and initial coulombic efficiency of 84.2% at 0.1C between 2.5 and 4.5 V. Our analysis indicates that the level of cation mixing and the incircle/circumcircle radii of tetrahedral sites in LiNixCoyMnzO2 are the main factors that affect its electrochemical performance rather than primary particle size.
原文英語
頁(從 - 到)936-950
頁數15
期刊International Journal of Electrochemical Science
13
發行號1
DOIs
出版狀態已發佈 - 1月 2018
對外發佈

ASJC Scopus subject areas

  • 電化學

指紋

深入研究「Lithium-ion migration in layered Li1.06Ni0.5Co0.2Mn0.3O2 cathode materials synthesized at different temperatures」主題。共同形成了獨特的指紋。

引用此