Investigation of cylindrical piezoelectric and specific multi-channel circular mems-transducer array resonator of ultrasonic ablation

研究成果: 雜誌貢獻文章同行評審

摘要

Background: A cylindrical piezoelectric element and a specific multi-channel circular mi-croelectromechanical systems (MEMS)-transducer array of ultrasonic system were used for ultrasonic energy generation and ablation. A relatively long time is required for the heat to be conducted to the target position. Ultrasound thermal therapy has great potential for treating deep hyperplastic tissues and tumors, such as breast cancer and liver tumors. Methods: Ultrasound ablation technology produces thermal energy by heating the surface of a target, and the heat gradually penetrates to the target’s interior. Beamforming was performed to observe energy distribution. A resonance method was used to generate ablation energy for verification. Energy was generated according to the coordi-nates of geometric graph positions to reach the ablation temperature. Results: The mean resonance frequency of Channels 1–8 was 2.5 MHz, and the cylindrical piezoelectric ultrasonic element of Channel A was 4.2546 Ω at 5.7946 MHz. High-intensity ultrasound has gradually been applied in clinical treatment. Widely adopted, ultrasonic hyperthermia involves the use of high-intensity ultrasound to heat tissues at 42–45C for 30–60 min. Conclusion: In the ultrasonic energy method, when the target position reaches a temperature that significantly reduces the cell viability (46.9C), protein surface modification occurs on the surface of the target.

原文英語
文章編號371
期刊Micromachines
12
發行號4
DOIs
出版狀態已發佈 - 四月 2021

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Mechanical Engineering
  • Electrical and Electronic Engineering

指紋 深入研究「Investigation of cylindrical piezoelectric and specific multi-channel circular mems-transducer array resonator of ultrasonic ablation」主題。共同形成了獨特的指紋。

引用此