Inhibition of MDA-MB-231 breast cancer cell proliferation and tumor growth by apigenin through induction of G2/M arrest and histone H3 acetylation-mediated p21WAF1/CIP1 expression

Tsui Hwa Tseng, Ming Hsien Chien, Wea Lung Lin, Yu-Ching Wen, Jyh Ming Chow, Chi Kuan Chen, Tsang Chih Kuo, Wei Jiunn Lee

研究成果: 雜誌貢獻文章

35 引文 (Scopus)

摘要

Apigenin (4',5,7-trihydroxyflavone), a flavonoid commonly found in fruits and vegetables, has anticancer properties in various malignant cancer cells. However, the molecular basis of the anticancer effect remains to be elucidated. In this study, we investigated the cellular mechanisms underlying the induction of cell cycle arrest by apigenin. Our results showed that apigenin at the nonapoptotic induction concentration inhibited cell proliferation and induced cell cycle arrest at the G2/M phase in the MDA-MB-231 breast cancer cell line. Immunoblot analysis indicated that apigenin suppressed the expression of cyclin A, cyclin B, and cyclin-dependent kinase-1 (CDK1), which control the G2-to-M phase transition in the cell cycle. In addition, apigenin upregulated p21WAF1/CIP1 and increased the interaction of p21WAF1/CIP1 with proliferating cell nuclear antigen (PCNA), which inhibits cell cycle progression. Furthermore, apigenin significantly inhibited histone deacetylase (HDAC) activity and induced histone H3 acetylation. The subsequent chromatin immunoprecipitation (ChIP) assay indicated that apigenin increased acetylation of histone H3 in the p21WAF1/CIP1 promoter region, resulting in the increase of p21WAF1/CIP1 transcription. In a tumor xenograft model, apigenin effectively delayed tumor growth. In these apigenin-treated tumors, we also observed reductions in the levels of cyclin A and cyclin B and increases in the levels of p21WAF1/CIP1 and acetylated histone H3. These findings demonstrate for the first time that apigenin can be used in breast cancer prevention and treatment through epigenetic regulation.
原文英語
期刊Environmental Toxicology
DOIs
出版狀態接受/付印 - 2016

指紋

Apigenin
Acetylation
Cell proliferation
tumor
Histones
Tumors
cancer
Cell Proliferation
Breast Neoplasms
Growth
Cells
Neoplasms
antigen
phase transition
vegetable
Cyclin B
fruit
Cyclin A
assay
Cell Cycle Checkpoints

ASJC Scopus subject areas

  • Health, Toxicology and Mutagenesis
  • Toxicology
  • Management, Monitoring, Policy and Law

引用此文

@article{31dfe3557b9147e59f7175f6cf2b98d1,
title = "Inhibition of MDA-MB-231 breast cancer cell proliferation and tumor growth by apigenin through induction of G2/M arrest and histone H3 acetylation-mediated p21WAF1/CIP1 expression",
abstract = "Apigenin (4',5,7-trihydroxyflavone), a flavonoid commonly found in fruits and vegetables, has anticancer properties in various malignant cancer cells. However, the molecular basis of the anticancer effect remains to be elucidated. In this study, we investigated the cellular mechanisms underlying the induction of cell cycle arrest by apigenin. Our results showed that apigenin at the nonapoptotic induction concentration inhibited cell proliferation and induced cell cycle arrest at the G2/M phase in the MDA-MB-231 breast cancer cell line. Immunoblot analysis indicated that apigenin suppressed the expression of cyclin A, cyclin B, and cyclin-dependent kinase-1 (CDK1), which control the G2-to-M phase transition in the cell cycle. In addition, apigenin upregulated p21WAF1/CIP1 and increased the interaction of p21WAF1/CIP1 with proliferating cell nuclear antigen (PCNA), which inhibits cell cycle progression. Furthermore, apigenin significantly inhibited histone deacetylase (HDAC) activity and induced histone H3 acetylation. The subsequent chromatin immunoprecipitation (ChIP) assay indicated that apigenin increased acetylation of histone H3 in the p21WAF1/CIP1 promoter region, resulting in the increase of p21WAF1/CIP1 transcription. In a tumor xenograft model, apigenin effectively delayed tumor growth. In these apigenin-treated tumors, we also observed reductions in the levels of cyclin A and cyclin B and increases in the levels of p21WAF1/CIP1 and acetylated histone H3. These findings demonstrate for the first time that apigenin can be used in breast cancer prevention and treatment through epigenetic regulation.",
keywords = "Apigenin, Breast cancer, Cell cycle arrest, Histone H3 acetylation, P21WAF1/CIP1",
author = "Tseng, {Tsui Hwa} and Chien, {Ming Hsien} and Lin, {Wea Lung} and Yu-Ching Wen and Chow, {Jyh Ming} and Chen, {Chi Kuan} and Kuo, {Tsang Chih} and Lee, {Wei Jiunn}",
year = "2016",
doi = "10.1002/tox.22247",
language = "English",
journal = "Environmental Toxicology",
issn = "1520-4081",
publisher = "John Wiley and Sons Inc.",

}

TY - JOUR

T1 - Inhibition of MDA-MB-231 breast cancer cell proliferation and tumor growth by apigenin through induction of G2/M arrest and histone H3 acetylation-mediated p21WAF1/CIP1 expression

AU - Tseng, Tsui Hwa

AU - Chien, Ming Hsien

AU - Lin, Wea Lung

AU - Wen, Yu-Ching

AU - Chow, Jyh Ming

AU - Chen, Chi Kuan

AU - Kuo, Tsang Chih

AU - Lee, Wei Jiunn

PY - 2016

Y1 - 2016

N2 - Apigenin (4',5,7-trihydroxyflavone), a flavonoid commonly found in fruits and vegetables, has anticancer properties in various malignant cancer cells. However, the molecular basis of the anticancer effect remains to be elucidated. In this study, we investigated the cellular mechanisms underlying the induction of cell cycle arrest by apigenin. Our results showed that apigenin at the nonapoptotic induction concentration inhibited cell proliferation and induced cell cycle arrest at the G2/M phase in the MDA-MB-231 breast cancer cell line. Immunoblot analysis indicated that apigenin suppressed the expression of cyclin A, cyclin B, and cyclin-dependent kinase-1 (CDK1), which control the G2-to-M phase transition in the cell cycle. In addition, apigenin upregulated p21WAF1/CIP1 and increased the interaction of p21WAF1/CIP1 with proliferating cell nuclear antigen (PCNA), which inhibits cell cycle progression. Furthermore, apigenin significantly inhibited histone deacetylase (HDAC) activity and induced histone H3 acetylation. The subsequent chromatin immunoprecipitation (ChIP) assay indicated that apigenin increased acetylation of histone H3 in the p21WAF1/CIP1 promoter region, resulting in the increase of p21WAF1/CIP1 transcription. In a tumor xenograft model, apigenin effectively delayed tumor growth. In these apigenin-treated tumors, we also observed reductions in the levels of cyclin A and cyclin B and increases in the levels of p21WAF1/CIP1 and acetylated histone H3. These findings demonstrate for the first time that apigenin can be used in breast cancer prevention and treatment through epigenetic regulation.

AB - Apigenin (4',5,7-trihydroxyflavone), a flavonoid commonly found in fruits and vegetables, has anticancer properties in various malignant cancer cells. However, the molecular basis of the anticancer effect remains to be elucidated. In this study, we investigated the cellular mechanisms underlying the induction of cell cycle arrest by apigenin. Our results showed that apigenin at the nonapoptotic induction concentration inhibited cell proliferation and induced cell cycle arrest at the G2/M phase in the MDA-MB-231 breast cancer cell line. Immunoblot analysis indicated that apigenin suppressed the expression of cyclin A, cyclin B, and cyclin-dependent kinase-1 (CDK1), which control the G2-to-M phase transition in the cell cycle. In addition, apigenin upregulated p21WAF1/CIP1 and increased the interaction of p21WAF1/CIP1 with proliferating cell nuclear antigen (PCNA), which inhibits cell cycle progression. Furthermore, apigenin significantly inhibited histone deacetylase (HDAC) activity and induced histone H3 acetylation. The subsequent chromatin immunoprecipitation (ChIP) assay indicated that apigenin increased acetylation of histone H3 in the p21WAF1/CIP1 promoter region, resulting in the increase of p21WAF1/CIP1 transcription. In a tumor xenograft model, apigenin effectively delayed tumor growth. In these apigenin-treated tumors, we also observed reductions in the levels of cyclin A and cyclin B and increases in the levels of p21WAF1/CIP1 and acetylated histone H3. These findings demonstrate for the first time that apigenin can be used in breast cancer prevention and treatment through epigenetic regulation.

KW - Apigenin

KW - Breast cancer

KW - Cell cycle arrest

KW - Histone H3 acetylation

KW - P21WAF1/CIP1

UR - http://www.scopus.com/inward/record.url?scp=84975778640&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84975778640&partnerID=8YFLogxK

U2 - 10.1002/tox.22247

DO - 10.1002/tox.22247

M3 - Article

C2 - 26872304

AN - SCOPUS:84975778640

JO - Environmental Toxicology

JF - Environmental Toxicology

SN - 1520-4081

ER -