Inhibiting MLL1-WDR5 interaction ameliorates neuropathic allodynia by attenuating histone H3 lysine 4 trimethylation-dependent spinal mGluR5 transcription

Tzer Bin Lin, Cheng Yuan Lai, Ming Chun Hsieh, Yu Cheng Ho, Hsueh Hsiao Wang, Po Sheng Yang, Jen Kun Cheng, Gin Den Chen, Soo Cheen Ng, Hsien Yu Peng

研究成果: 雜誌貢獻文章同行評審

3 引文 斯高帕斯(Scopus)

摘要

ABSTRACT: Mixed lineage leukemia 1 (MLL1)-mediated histone H3 lysine 4 trimethylation (H3K4me3) of a subset of genes has been linked to the transcriptional activation critical for synaptic plasticity, but its potential contribution to neuropathic allodynia development remains poorly explored. Here, we show that MLL1, which is induced in dorsal horn neuron after spinal nerve ligation (SNL), is responsible for mechanical allodynia and increased H3K4me3 at metabotropic glutamate receptor subtype 5 (mGluR5) promoter. Moreover, SNL induced WD (Trp-Asp) repeat domain 5 subunit (WDR5) expression as well as the MLL1-WDR5 interaction accompany with H3K4me3 enrichment and transcription of mGluR5 gene in the dorsal horn in neuropathic allodynia progression. Conversely, WDR5-0103, a novel inhibitor of the MLL1-WDR5 interaction, reversed SNL-induced allodynia and inhibited SNL-enhanced mGluR5 transcription/expression as well as MLL1, WDR5, and H3K4me3 at the mGluR5 promoter in the dorsal horn. Furthermore, disrupting the expression of MLL1 or WDR5 using small interfering RNA attenuated mechanical allodynia and reversed protein transcription/expression and complex localizing at mGluR5 promoter in the dorsal horn induced by SNL. This finding revealed that MLL1-WDR5 complex integrity regulates MLL1 and WDR5 recruitment to H3K4me3 enrichment at mGluR5 promoter in the dorsal horn underlying neuropathic allodynia. Collectively, our findings indicated that SNL enhances the MLL1-WDR5 complex, which facilitates MLL1 and WDR5 recruitment to H3K4me3 enrichment at mGluR5 promoter in spinal plasticity contributing to neuropathic allodynia pathogenesis.
原文英語
頁(從 - 到)1995-2009
頁數15
期刊Pain
161
發行號9
DOIs
出版狀態已發佈 - 九月 1 2020

ASJC Scopus subject areas

  • 神經內科
  • 神經病學(臨床)
  • 麻醉與疼痛醫學

指紋

深入研究「Inhibiting MLL1-WDR5 interaction ameliorates neuropathic allodynia by attenuating histone H3 lysine 4 trimethylation-dependent spinal mGluR5 transcription」主題。共同形成了獨特的指紋。

引用此