In Vitro Studies of Composite Bone Filler Based on Poly(Propylene Fumarate) and Biphasic α-Tricalcium Phosphate/Hydroxyapatite Ceramic Powder

Chang Chin Wu, Kai Chiang Yang, Shu Hua Yang, Min Huei Lin, Tzong Fu Kuo, Feng Huei Lin

研究成果: 雜誌貢獻文章同行評審

19 引文 斯高帕斯(Scopus)

摘要

While many different filler materials have been applied in vertebral augmentation procedures, none is perfect in all biomechanical and biological characteristics. To minimize possible shortages, we synthesized a new biodegradable, injectable, and premixed composite made from poly(propylene fumarate) (PPF) and biphasic α-tricalcium phosphate (α-TCP)/hydroxyapatite (HAP) ceramics powder and evaluated the material properties of the compound in vitro. We mixed the PPF cross-linked by N-vinyl pyrrolidinone and biphasic α-TCP/HAP powder in different ratios with benzoyl peroxide as an initiator. The setting time and temperature were recorded, although they could be manipulated by modulating the concentrations of hydroquinone and N,N-dimethyl-p-toluidine. Degradation, cytocompatibility, mechanical properties, and radiopacity were analyzed after the composites were cured by a cylindrical shape. We also compared the study materials with poly(methyl methacrylate) (PMMA) and PPF with pure HAP particles. Results showed that lower temperature during curing process (38-44°C), sufficient initial mechanical compressive fracture strength (61.1±3.7MPa), and gradual degradation were observed in the newly developed bone filler. Radiopacity in Hounsfield units was similar to PMMA as determined by computed tomography scan. Both pH value variation and cytotoxicity were within biological tolerable limits based on the biocompatibility tests. Mixtures with 70% α-TCP/HAP powder were superior to other groups. This study indicated that a composite of PPF and biphasic α-TCP/HAP powder is a promising, premixed, injectable biodegradable filler and that a mixture containing 70% α-TCP/HAP exhibits the best properties.
原文英語
頁(從 - 到)418-428
頁數11
期刊Artificial Organs
36
發行號4
DOIs
出版狀態已發佈 - 4月 2012

ASJC Scopus subject areas

  • 生物材料
  • 生物醫學工程
  • 生物工程
  • 醫藥(雜項)

指紋

深入研究「In Vitro Studies of Composite Bone Filler Based on Poly(Propylene Fumarate) and Biphasic α-Tricalcium Phosphate/Hydroxyapatite Ceramic Powder」主題。共同形成了獨特的指紋。

引用此