Improved hepatoprotective effect of liposome-encapsulated astaxanthin in lipopolysaccharide-induced acute hepatotoxicity

Chun Hung Chiu, Chun Chao Chang, Shiang Ting Lin, Charng Cherng Chyau, Robert Y. Peng

研究成果: 雜誌貢獻文章

13 引文 斯高帕斯(Scopus)

摘要

Lipopolysaccharide (LPS)-induced acute hepatotoxicity is significantly associated with oxidative stress. Astaxanthin (AST), a xanthophyll carotenoid, is well known for its potent antioxidant capacity. However, its drawbacks of poor aqueous solubility and low bioavailability have limited its utility. Liposome encapsulation is considered as an effective alternative use for the improvement of bioavailability of the hydrophobic compound. We hypothesized that AST encapsulated within liposomes (LA) apparently shows improved stability and transportability compared to that of free AST. To investigate whether LA administration can efficiently prevent the LPS-induced acute hepatotoxicity, male Sprague-Dawley rats (n = six per group) were orally administered liposome-encapsulated AST at 2, 5 or 10 mg/kg-day (LA-2, LA-5, and LA-10) for seven days and then were LPS-challenged (i.p., 5 mg/kg). The LA-10 administered group, but not the other groups, exhibited a significant amelioration of serum glutamic pyruvic transaminase (GPT), glutamic oxaloacetic transaminase (GOT), blood urea nitrogen (BUN), creatinine (CRE), hepatic malondialdehyde (MDA) and glutathione peroxidase (GSH-Px), IL-6, and hepatic nuclear NF-κB and inducible nitric oxide synthase (iNOS), suggesting that LA at a 10 mg/kg-day dosage renders hepatoprotective effects. Moreover, the protective effects were even superior to that of positive control N-acetylcysteine (NAC, 200 mg/kg-day). Histopathologically, NAC, free AST, LA-2 and LA-5 partially, but LA-10 completely, alleviated the acute inflammatory status. These results indicate that hydrophobic AST after being properly encapsulated by liposomes improves bioavailability and can also function as potential drug delivery system in treating hepatotoxicity.

原文英語
文章編號1128
期刊International Journal of Molecular Sciences
17
發行號7
DOIs
出版狀態已發佈 - 七月 14 2016

    指紋

ASJC Scopus subject areas

  • Physical and Theoretical Chemistry
  • Organic Chemistry
  • Spectroscopy
  • Inorganic Chemistry
  • Catalysis
  • Molecular Biology
  • Computer Science Applications

引用此