Identification of potential biomarkers related to glioma survival by gene expression profile analysis

Justin Bo Kai Hsu, Tzu Hao Chang, Gilbert Aaron Lee, Tzong Yi Lee, Cheng Yu Chen

研究成果: 雜誌貢獻文章

2 引文 (Scopus)

摘要

Background: Recent studies have proposed several gene signatures as biomarkers for different grades of gliomas from various perspectives. However, most of these genes can only be used appropriately for patients with specific grades of gliomas. Methods: In this study, we aimed to identify survival-relevant genes shared between glioblastoma multiforme (GBM) and lower-grade glioma (LGG), which could be used as potential biomarkers to classify patients into different risk groups. Cox proportional hazard regression model (Cox model) was used to extract relative genes, and effectiveness of genes was estimated against random forest regression. Finally, risk models were constructed with logistic regression. Results: We identified 104 key genes that were shared between GBM and LGG, which could be significantly correlated with patients' survival based on next-generation sequencing data obtained from The Cancer Genome Atlas for gene expression analysis. The effectiveness of these genes in the survival prediction of GBM and LGG was evaluated, and the average receiver operating characteristic curve (ROC) area under the curve values ranged from 0.7 to 0.8. Gene set enrichment analysis revealed that these genes were involved in eight significant pathways and 23 molecular functions. Moreover, the expressions of ten (CTSZ, EFEMP2, ITGA5, KDELR2, MDK, MICALL2, MAP 2 K3, PLAUR, SERPINE1, and SOCS3) of these genes were significantly higher in GBM than in LGG, and comparing their expression levels to those of the proposed control genes (TBP, IPO8, and SDHA) could have the potential capability to classify patients into high- and low- risk groups, which differ significantly in the overall survival. Signatures of candidate genes were validated, by multiple microarray datasets from Gene Expression Omnibus, to increase the robustness of using these potential prognostic factors. In both the GBM and LGG cohort study, most of the patients in the high-risk group had the IDH1 wild-type gene, and those in the low-risk group had IDH1 mutations. Moreover, most of the high-risk patients with LGG possessed a 1p/19q-noncodeletion. Conclusion: In this study, we identified survival relevant genes which were shared between GBM and LGG, and those enabled to classify patients into high- and low-risk groups based on expression level analysis. Both the risk groups could be correlated with the well-known genetic variants, thus suggesting their potential prognostic value in clinical application.
原文英語
文章編號34
期刊BMC Medical Genomics
11
DOIs
出版狀態已發佈 - 三月 20 2019

指紋

Transcriptome
Glioma
Biomarkers
Survival
Genes
Glioblastoma
Proportional Hazards Models
Gene Expression
Atlases
ROC Curve
Area Under Curve
Cohort Studies
Logistic Models
Genome

ASJC Scopus subject areas

  • Genetics
  • Genetics(clinical)

引用此文

Identification of potential biomarkers related to glioma survival by gene expression profile analysis. / Hsu, Justin Bo Kai; Chang, Tzu Hao; Lee, Gilbert Aaron; Lee, Tzong Yi; Chen, Cheng Yu.

於: BMC Medical Genomics, 卷 11, 34, 20.03.2019.

研究成果: 雜誌貢獻文章

@article{86a0855addc1428f9b4738b21788d125,
title = "Identification of potential biomarkers related to glioma survival by gene expression profile analysis",
abstract = "Background: Recent studies have proposed several gene signatures as biomarkers for different grades of gliomas from various perspectives. However, most of these genes can only be used appropriately for patients with specific grades of gliomas. Methods: In this study, we aimed to identify survival-relevant genes shared between glioblastoma multiforme (GBM) and lower-grade glioma (LGG), which could be used as potential biomarkers to classify patients into different risk groups. Cox proportional hazard regression model (Cox model) was used to extract relative genes, and effectiveness of genes was estimated against random forest regression. Finally, risk models were constructed with logistic regression. Results: We identified 104 key genes that were shared between GBM and LGG, which could be significantly correlated with patients' survival based on next-generation sequencing data obtained from The Cancer Genome Atlas for gene expression analysis. The effectiveness of these genes in the survival prediction of GBM and LGG was evaluated, and the average receiver operating characteristic curve (ROC) area under the curve values ranged from 0.7 to 0.8. Gene set enrichment analysis revealed that these genes were involved in eight significant pathways and 23 molecular functions. Moreover, the expressions of ten (CTSZ, EFEMP2, ITGA5, KDELR2, MDK, MICALL2, MAP 2 K3, PLAUR, SERPINE1, and SOCS3) of these genes were significantly higher in GBM than in LGG, and comparing their expression levels to those of the proposed control genes (TBP, IPO8, and SDHA) could have the potential capability to classify patients into high- and low- risk groups, which differ significantly in the overall survival. Signatures of candidate genes were validated, by multiple microarray datasets from Gene Expression Omnibus, to increase the robustness of using these potential prognostic factors. In both the GBM and LGG cohort study, most of the patients in the high-risk group had the IDH1 wild-type gene, and those in the low-risk group had IDH1 mutations. Moreover, most of the high-risk patients with LGG possessed a 1p/19q-noncodeletion. Conclusion: In this study, we identified survival relevant genes which were shared between GBM and LGG, and those enabled to classify patients into high- and low-risk groups based on expression level analysis. Both the risk groups could be correlated with the well-known genetic variants, thus suggesting their potential prognostic value in clinical application.",
keywords = "Biomarkers, Gene signature, High-grade glioma, Low-grade glioma (LGG), Prognosis",
author = "Hsu, {Justin Bo Kai} and Chang, {Tzu Hao} and Lee, {Gilbert Aaron} and Lee, {Tzong Yi} and Chen, {Cheng Yu}",
year = "2019",
month = "3",
day = "20",
doi = "10.1186/s12920-019-0479-6",
language = "English",
volume = "11",
journal = "BMC Medical Genomics",
issn = "1755-8794",
publisher = "BioMed Central",

}

TY - JOUR

T1 - Identification of potential biomarkers related to glioma survival by gene expression profile analysis

AU - Hsu, Justin Bo Kai

AU - Chang, Tzu Hao

AU - Lee, Gilbert Aaron

AU - Lee, Tzong Yi

AU - Chen, Cheng Yu

PY - 2019/3/20

Y1 - 2019/3/20

N2 - Background: Recent studies have proposed several gene signatures as biomarkers for different grades of gliomas from various perspectives. However, most of these genes can only be used appropriately for patients with specific grades of gliomas. Methods: In this study, we aimed to identify survival-relevant genes shared between glioblastoma multiforme (GBM) and lower-grade glioma (LGG), which could be used as potential biomarkers to classify patients into different risk groups. Cox proportional hazard regression model (Cox model) was used to extract relative genes, and effectiveness of genes was estimated against random forest regression. Finally, risk models were constructed with logistic regression. Results: We identified 104 key genes that were shared between GBM and LGG, which could be significantly correlated with patients' survival based on next-generation sequencing data obtained from The Cancer Genome Atlas for gene expression analysis. The effectiveness of these genes in the survival prediction of GBM and LGG was evaluated, and the average receiver operating characteristic curve (ROC) area under the curve values ranged from 0.7 to 0.8. Gene set enrichment analysis revealed that these genes were involved in eight significant pathways and 23 molecular functions. Moreover, the expressions of ten (CTSZ, EFEMP2, ITGA5, KDELR2, MDK, MICALL2, MAP 2 K3, PLAUR, SERPINE1, and SOCS3) of these genes were significantly higher in GBM than in LGG, and comparing their expression levels to those of the proposed control genes (TBP, IPO8, and SDHA) could have the potential capability to classify patients into high- and low- risk groups, which differ significantly in the overall survival. Signatures of candidate genes were validated, by multiple microarray datasets from Gene Expression Omnibus, to increase the robustness of using these potential prognostic factors. In both the GBM and LGG cohort study, most of the patients in the high-risk group had the IDH1 wild-type gene, and those in the low-risk group had IDH1 mutations. Moreover, most of the high-risk patients with LGG possessed a 1p/19q-noncodeletion. Conclusion: In this study, we identified survival relevant genes which were shared between GBM and LGG, and those enabled to classify patients into high- and low-risk groups based on expression level analysis. Both the risk groups could be correlated with the well-known genetic variants, thus suggesting their potential prognostic value in clinical application.

AB - Background: Recent studies have proposed several gene signatures as biomarkers for different grades of gliomas from various perspectives. However, most of these genes can only be used appropriately for patients with specific grades of gliomas. Methods: In this study, we aimed to identify survival-relevant genes shared between glioblastoma multiforme (GBM) and lower-grade glioma (LGG), which could be used as potential biomarkers to classify patients into different risk groups. Cox proportional hazard regression model (Cox model) was used to extract relative genes, and effectiveness of genes was estimated against random forest regression. Finally, risk models were constructed with logistic regression. Results: We identified 104 key genes that were shared between GBM and LGG, which could be significantly correlated with patients' survival based on next-generation sequencing data obtained from The Cancer Genome Atlas for gene expression analysis. The effectiveness of these genes in the survival prediction of GBM and LGG was evaluated, and the average receiver operating characteristic curve (ROC) area under the curve values ranged from 0.7 to 0.8. Gene set enrichment analysis revealed that these genes were involved in eight significant pathways and 23 molecular functions. Moreover, the expressions of ten (CTSZ, EFEMP2, ITGA5, KDELR2, MDK, MICALL2, MAP 2 K3, PLAUR, SERPINE1, and SOCS3) of these genes were significantly higher in GBM than in LGG, and comparing their expression levels to those of the proposed control genes (TBP, IPO8, and SDHA) could have the potential capability to classify patients into high- and low- risk groups, which differ significantly in the overall survival. Signatures of candidate genes were validated, by multiple microarray datasets from Gene Expression Omnibus, to increase the robustness of using these potential prognostic factors. In both the GBM and LGG cohort study, most of the patients in the high-risk group had the IDH1 wild-type gene, and those in the low-risk group had IDH1 mutations. Moreover, most of the high-risk patients with LGG possessed a 1p/19q-noncodeletion. Conclusion: In this study, we identified survival relevant genes which were shared between GBM and LGG, and those enabled to classify patients into high- and low-risk groups based on expression level analysis. Both the risk groups could be correlated with the well-known genetic variants, thus suggesting their potential prognostic value in clinical application.

KW - Biomarkers

KW - Gene signature

KW - High-grade glioma

KW - Low-grade glioma (LGG)

KW - Prognosis

UR - http://www.scopus.com/inward/record.url?scp=85063253047&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85063253047&partnerID=8YFLogxK

U2 - 10.1186/s12920-019-0479-6

DO - 10.1186/s12920-019-0479-6

M3 - Article

VL - 11

JO - BMC Medical Genomics

JF - BMC Medical Genomics

SN - 1755-8794

M1 - 34

ER -