High UV-VIS-NIR light-induced antibacterial activity by heterostructured TiO2-FeS2 nanocomposites

Chinmaya Mutalik, Yu Cheng Hsiao, Yi Hsuan Chang, Dyah Ika Krisnawati, Moh Alimansur, Achmad Jazidie, Mohammad Nuh, Chia Che Chang, Di Yan Wang, Tsung Rong Kuo

研究成果: 雜誌貢獻文章同行評審

10 引文 斯高帕斯(Scopus)

摘要

Purpose: Antibiotic resistance issues associated with microbial pathogenesis are considered to be one of the most serious current threats to health. Fortunately, TiO2, a photoactive semiconductor, was proven to have antibacterial activity and is being widely utilized. However, its use is limited to the short range of absorption wavelength. Methods: In this work, heterostructured TiO2-FeS2 nanocomposites (NCs) were success-fully prepared by a facile solution approach to enhance light-induced antibacterial activity over a broader absorption range. Results: In TiO2-FeS2 NCs, FeS2 NPs, as light harvesters, can effectively increase light absorption from the visible (Vis) to near-infrared (NIR). Results of light-induced antibacterial activities indicated that TiO2-FeS2 NCs had better antibacterial activity than that of only TiO2 nanoparticles (NPs) or only FeS2 NPs. Reactive oxygen species (ROS) measurements also showed that TiO2-FeS2 NCs produced the highest relative ROS levels. Unlike TiO2 NPs, TiO2-FeS2 NCs, under light irradiation with a 515-nm filter, could absorb light wavelengths longer than 515 nm to generate ROS. In the mechanistic study, we found that TiO2 NPs in TiO2-FeS2 NCs could absorb ultraviolet (UV) light to generate photoinduced electrons and holes for ROS generation, including ⋅O2 − and ⋅OH; FeS2 NPs efficiently harvested Vis to NIR light to generate photoinduced electrons, which then were transferred to TiO2 NPs to facilitate ROS generation. Conclusion: TiO2-FeS2 NCs with superior light-induced antibacterial activity could be a promising antibacterial agent against bacterial infections.

原文英語
頁(從 - 到)8911-8920
頁數10
期刊International Journal of Nanomedicine
15
DOIs
出版狀態已發佈 - 2020

ASJC Scopus subject areas

  • 生物物理學
  • 生物工程
  • 生物材料
  • 藥學科學
  • 藥物發現
  • 有機化學

指紋

深入研究「High UV-VIS-NIR light-induced antibacterial activity by heterostructured TiO<sub>2</sub>-FeS<sub>2</sub> nanocomposites」主題。共同形成了獨特的指紋。

引用此