摘要
The effects of the nano-titanium hydrides (nano-γ-TiH) phase on the formation of nanoporous Ti oxide layer by the potential approach (hydrogen fluoride (HF) pretreatment and sodium hydroxide (NaOH) anodization) were investigated using scanning electron microscopy, X-ray photoelectron spectroscopy, X-ray diffractometry, and transmission electron microscopy. The nano-γ-TiH phase was formed by the HF pretreatment with various current densities. After the NaOH anodization, the nano-γ-TiH phase was dissolved and transformed into nanoporous rutile-Ti dioxide (R-TiO2). As the Ti underwent HF pretreatment and NaOH anodization, the microstructure on the surface layer was transformed from α-Ti→(α-Ti + nano-γ-TiH)→(α-Ti + R-TiO2). In-vitro biocompatibility also indicated that the Ti with a hierarchical porous (micro and nanoporous) TiO2 surface possessed great potential to enhance cell adhesion ability. Thus, the potential approach can be utilized to fabricate a promising hierarchical porous surface on the Ti implant for promoting biocompatibility.
原文 | 英語 |
---|---|
文章編號 | 1363 |
期刊 | Applied Sciences (Switzerland) |
卷 | 10 |
發行號 | 4 |
DOIs | |
出版狀態 | 已發佈 - 2月 1 2020 |
ASJC Scopus subject areas
- 材料科學(全部)
- 儀器
- 工程 (全部)
- 製程化學與技術
- 電腦科學應用
- 流體流動和轉移過程