TY - JOUR
T1 - Dithienocarbazole-based ladder-type heptacyclic arenes with silicon, carbon, and nitrogen bridges
T2 - Synthesis, molecular properties, field-effect transistors, and photovoltaic applications
AU - Wu, Jhong Sian
AU - Cheng, Yen Ju
AU - Lin, Tai Yen
AU - Chang, Chih Yu
AU - Shih, Peng I.
AU - Hsu, Chain Shu
PY - 2012/4/24
Y1 - 2012/4/24
N2 - A new class of ladder-type dithienosilolo-carbazole (DTSC), dithienopyrrolo-carbazole (DTPC), and dithienocyclopenta-carbazole (DTCC) units is developed in which two outer thiophene subunits are covalently fastened to the central 2,7-carbazole cores by silicon, nitrogen, and carbon bridges, respectively. The heptacyclic multifused monomers are polymerized with the benzothiadiazole (BT) acceptor by palladium-catalyzed cross-coupling to afford three alternating donor-acceptor copolymers poly(dithienosilolo-carbazole-alt- benzothiadiazole) (PDTSCBT), poly(dithienocyclopenta-carbazole-alt- benzothiadiazole) (PDTCCBT), and poly(dithienopyrrolo-carbazole-alt- benzothiadiazole) (PDTPCBT). The silole units in DTSC possess electron-accepting ability that lowers the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels of PDTSCBT, whereas stronger electron-donating ability of the pyrrole moiety in DTPC increases the HOMO and LUMO energy levels of PDTPCBT. The optical bandgaps (E g opt) deduced from the absorption edges of thin film spectra are in the following order: PDTSCBT (1.83 eV) > PDTCCBT (1.64 eV) > PDTPCBT (1.50 eV). This result indicated that the donor strength of the heptacyclic arenes is in the order: DTPC > DTCC > DTSC. The devices based on PDTSCBT and PDTCCBT exhibited high hole mobilities of 0.073 and 0.110 cm 2 V -1 s -1, respectively, which are among the highest performance from the OFET devices based on the amorphous donor-acceptor copolymers. The bulk heterojunction photovoltaic device using PDTSCBT as the p-type material delivered a promising efficiency of 5.2% with an enhanced open circuit voltage, V oc, of 0.82 V.
AB - A new class of ladder-type dithienosilolo-carbazole (DTSC), dithienopyrrolo-carbazole (DTPC), and dithienocyclopenta-carbazole (DTCC) units is developed in which two outer thiophene subunits are covalently fastened to the central 2,7-carbazole cores by silicon, nitrogen, and carbon bridges, respectively. The heptacyclic multifused monomers are polymerized with the benzothiadiazole (BT) acceptor by palladium-catalyzed cross-coupling to afford three alternating donor-acceptor copolymers poly(dithienosilolo-carbazole-alt- benzothiadiazole) (PDTSCBT), poly(dithienocyclopenta-carbazole-alt- benzothiadiazole) (PDTCCBT), and poly(dithienopyrrolo-carbazole-alt- benzothiadiazole) (PDTPCBT). The silole units in DTSC possess electron-accepting ability that lowers the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels of PDTSCBT, whereas stronger electron-donating ability of the pyrrole moiety in DTPC increases the HOMO and LUMO energy levels of PDTPCBT. The optical bandgaps (E g opt) deduced from the absorption edges of thin film spectra are in the following order: PDTSCBT (1.83 eV) > PDTCCBT (1.64 eV) > PDTPCBT (1.50 eV). This result indicated that the donor strength of the heptacyclic arenes is in the order: DTPC > DTCC > DTSC. The devices based on PDTSCBT and PDTCCBT exhibited high hole mobilities of 0.073 and 0.110 cm 2 V -1 s -1, respectively, which are among the highest performance from the OFET devices based on the amorphous donor-acceptor copolymers. The bulk heterojunction photovoltaic device using PDTSCBT as the p-type material delivered a promising efficiency of 5.2% with an enhanced open circuit voltage, V oc, of 0.82 V.
KW - field-effect transistors
KW - ladder-type structures
KW - polymer solar cells
UR - http://www.scopus.com/inward/record.url?scp=84859845866&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84859845866&partnerID=8YFLogxK
U2 - 10.1002/adfm.201102906
DO - 10.1002/adfm.201102906
M3 - Article
AN - SCOPUS:84859845866
VL - 22
SP - 1711
EP - 1722
JO - Advanced Materials for Optics and Electronics
JF - Advanced Materials for Optics and Electronics
SN - 1057-9257
IS - 8
ER -