Controlling Cu Migration on Resistive Switching, Artificial Synapse, and Glucose/Saliva Detection by Using an Optimized AlO x Interfacial Layer in a-CO x-Based Conductive Bridge Random Access Memory

Sreekanth Ginnaram, Jiantai Timothy Qiu, Siddheswar Maikap

研究成果: 雜誌貢獻文章同行評審

2 引文 斯高帕斯(Scopus)

摘要

The Cu migration is controlled by using an optimized AlOx interfacial layer, and effects on resistive switching performance, artificial synapse, and human saliva detection in an amorphous-oxygenated-carbon (a-COx)-based CBRAM platform have been investigated for the first time. The 4 nm-thick AlOx layer in the Cu/AlOx/a-COx/TiNxOy/TiN structure shows consecutive >2000 DC switching, tight distribution of SET/RESET voltages, a long program/erase (P/E) endurance of >109 cycles at a low operation current of 300 μA, and artificial synaptic characteristics under a small pulse width of 100 ns. After a P/E endurance of >108 cycles, the Cu migration is observed by both ex situ high-resolution transmission electron microscopy and energy-dispersive X-ray spectroscopy mapping images. Furthermore, the optimized Cu/AlOx/a-COx/TiNxOy/TiN CBRAM detects glucose with a low concentration of 1 pM, and real-time measurement of human saliva with a small sample volume of 1 μL is also detected repeatedly in vitro. This is owing to oxidation-reduction of Cu electrode, and the switching mechanism is explored. Therefore, this CBRAM device is beneficial for future artificial intelligence application.

原文英語
頁(從 - 到)7032-7043
頁數12
期刊ACS Omega
5
發行號12
DOIs
出版狀態接受/付印 - 2020
對外發佈Yes

ASJC Scopus subject areas

  • Chemistry(all)
  • Chemical Engineering(all)

指紋 深入研究「Controlling Cu Migration on Resistive Switching, Artificial Synapse, and Glucose/Saliva Detection by Using an Optimized AlO <sub>x</sub> Interfacial Layer in a-CO <sub>x</sub>-Based Conductive Bridge Random Access Memory」主題。共同形成了獨特的指紋。

引用此