Classification of oscillometric envelope shape using frequent sequence mining

Hung Wen Diao, Weichih Hu, Gong Yau Lan, Liang Yu Shyu

研究成果: 書貢獻/報告類型會議貢獻

1 引文 斯高帕斯(Scopus)

摘要

The shape of the oscillometric envelope is known to affect the accuracy of automatic noninvasive blood pressure (NIBP) measurement devices that use the oscillometric principle to determine systolic and diastolic blood pressures. This study proposes a novel shape classification method that uses data mining techniques to determine the characteristic sequences for different envelope shapes. The results indicate that the proposed method effectively determines the characteristic sequences for different subject groups. Subjects in the high- score group and in the low- score group tend to have an envelope with a broader plateau and are bell-shaped, respectively. This information about shape can be used for future determination of the correct algorithm for systolic and diastolic blood pressures determination in NIBP devices.
原文英語
主出版物標題2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2013
頁面5805-5808
頁數4
DOIs
出版狀態已發佈 - 十月 31 2013
對外發佈
事件2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2013 - Osaka, 日本
持續時間: 七月 3 2013七月 7 2013

會議

會議2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2013
國家/地區日本
城市Osaka
期間7/3/137/7/13

Keywords

  • Shape
  • Blood pressure
  • Biomedical monitoring
  • Pressure measurement
  • Data mining
  • Accuracy

ASJC Scopus subject areas

  • 電腦視覺和模式識別
  • 訊號處理
  • 生物醫學工程
  • 健康資訊學

指紋

深入研究「Classification of oscillometric envelope shape using frequent sequence mining」主題。共同形成了獨特的指紋。

引用此