Classification of liver diseases based on ultrasound image texture features

Sendren Sheng Dong Xu, Chun Chao Chang, Chien Tien Su, Pham Quoc Phu

研究成果: 雜誌貢獻文章

3 引文 斯高帕斯(Scopus)


This paper discusses using computer-aided diagnosis (CAD) to distinguish between hepatocellular carcinoma (HCC), i.e., the most common type of primary liver malignancy and a leading cause of death in people with cirrhosis worldwide, and liver abscess based on ultrasound image texture features and a support vector machine (SVM) classifier. Among 79 cases of liver diseases including 44 cases of liver cancer and 35 cases of liver abscess, this research extracts 96 features including 52 features of the gray-level co-occurrence matrix (GLCM) and 44 features of the gray-level run-length matrix (GLRLM) from the regions of interest (ROIs) in ultrasound images. Three feature selection models-(i) sequential forward selection (SFS), (ii) sequential backward selection (SBS), and (iii) F-score-are adopted to distinguish the two liver diseases. Finally, the developed system can classify liver cancer and liver abscess by SVM with an accuracy of 88.875%. The proposed methods for CAD can provide diagnostic assistance while distinguishing these two types of liver lesions.
期刊Applied Sciences (Switzerland)
出版狀態已發佈 - 一月 19 2019

ASJC Scopus subject areas

  • Materials Science(all)
  • Instrumentation
  • Engineering(all)
  • Process Chemistry and Technology
  • Computer Science Applications
  • Fluid Flow and Transfer Processes

指紋 深入研究「Classification of liver diseases based on ultrasound image texture features」主題。共同形成了獨特的指紋。

  • 引用此