Characterization of FN1-FGFR1 and novel FN1-FGF1 fusion genes in a large series of phosphaturic mesenchymal tumors

Jen Chieh Lee, Sheng Yao Su, Chun A. Changou, Rong Sen Yang, Keh Sung Tsai, Michael T. Collins, Eric S. Orwoll, Chung Yen Lin, Shu Hwa Chen, Shyang Rong Shih, Cheng Han Lee, Yoshinao Oda, Steven D. Billings, Chien Feng Li, G. Petur Nielsen, Eiichi Konishi, Fredrik Petersson, Thomas O. Carpenter, Kesavan Sittampalam, Hsuan Ying HuangAndrew L. Folpe

研究成果: 雜誌貢獻文章同行評審

63 引文 斯高帕斯(Scopus)

摘要

Phosphaturic mesenchymal tumors typically cause paraneoplastic osteomalacia, chiefly as a result of FGF23 secretion. In a prior study, we identified FN1-FGFR1 fusion in 9 of 15 phosphaturic mesenchymal tumors. In this study, a total of 66 phosphaturic mesenchymal tumors and 7 tumors resembling phosphaturic mesenchymal tumor but without known phosphaturia were studied. A novel FN1-FGF1 fusion gene was identified in two cases without FN1-FGFR1 fusion by RNA sequencing and cross-validated with direct sequencing and western blot. Fluorescence in situ hybridization analyses revealed FN1-FGFR1 fusion in 16 of 39 (41%) phosphaturic mesenchymal tumors and identified an additional case with FN1-FGF1 fusion. The two fusion genes were mutually exclusive. Combined with previous data, the overall prevalence of FN1-FGFR1 and FN1-FGF1 fusions was 42% (21/50) and 6% (3/50), respectively. FGFR1 immunohistochemistry was positive in 82% (45/55) of phosphaturic mesenchymal tumors regardless of fusion status. By contrast, 121 cases of potential morphologic mimics (belonging to 13 tumor types) rarely expressed FGFR1, the main exceptions being solitary fibrous tumors (positive in 40%), chondroblastomas (40%), and giant cell tumors of bone (38%), suggesting a possible role for FGFR1 immunohistochemistry in the diagnosis of phosphaturic mesenchymal tumor. With the exception of one case reported in our prior study, none of the remaining tumors resembling phosphaturic mesenchymal tumor had either fusion type or expressed significant FGFR1. Our findings provide insight into possible mechanisms underlying the pathogenesis of phosphaturic mesenchymal tumor and imply a central role of the FGF1-FGFR1 signaling pathway. The novel FN1-FGF1 protein is expected to be secreted and serves as a ligand that binds and activates FGFR1 to achieve an autocrine loop. Further study is required to determine the functions of these fusion proteins.
原文英語
頁(從 - 到)1335-1346
頁數12
期刊Modern Pathology
29
發行號11
DOIs
出版狀態已發佈 - 十一月 1 2016
對外發佈Yes

ASJC Scopus subject areas

  • Pathology and Forensic Medicine

指紋 深入研究「Characterization of FN1-FGFR1 and novel FN1-FGF1 fusion genes in a large series of phosphaturic mesenchymal tumors」主題。共同形成了獨特的指紋。

引用此