Cathelicidin attenuates hyperoxia-induced kidney injury in newborn rats

研究成果: 雜誌貢獻文章

1 引文 斯高帕斯(Scopus)

摘要

Aim: Supplemental oxygen is often used to treat neonates with respiratory disorders. Human and animal studies have demonstrated that neonatal hyperoxia increases oxidative stress and induces damage and collagen deposition in kidney during the perinatal period. Cathelicidin LL-37 is one important group of human antimicrobial peptides which exhibits antioxidant activity and its overexpression resists hyperoxia-induced oxidative stress. This study was designed to evaluate the protective effects of cathelicidin in hyperoxia-induced kidney injury in newborn rats. Methods: Sprague-Dawley rat pups were reared in either room air (RA) or hyperoxia (85% O2) and were randomly treated with low-dose (4 mg/kg) and high-dose (8 mg/kg) cathelicidin in normal saline (NS) administered intraperitoneally on postnatal days 1–6. The following six groups were obtained: RA + NS, RA + low-dose cathelicidin, RA + high-dose cathelicidin, O2 + NS, O2 + low-dose cathelicidin, and O2 + high-dose cathelicidin. Kidneys were taken for Western blot and histological analyses on postnatal day 7. Results: The hyperoxia-reared rats exhibited significantly lower body weights and anti-inflammatory M2 macrophages, but the kidney injury scores, oxidative stress marker 8-hydroxy-2'-deoxyguanosine (8-OHdG)-positive cells, pro-inflammatory M1 macrophages, collagen deposition, and NF-κB expression were higher than did the RA-reared rats. Conclusions: Cathelicidin treatment attenuated kidney injury as evidenced by lower kidney injury scores, 8-OHdG-positive cells, collagen deposition, and reversion of hyperoxia-induced M1/M2 macrophage polarization. The role of Cathelicidin in ameliorates kidney injury of the hyperoxia newborn rats was accompanied by decreased NF-κB expression, which probably through the modulating NF-κB activity in the kidney.
原文英語
頁(從 - 到)733-741
頁數9
期刊Renal Failure
41
發行號1
DOIs
出版狀態已發佈 - 一月 1 2019

ASJC Scopus subject areas

  • Critical Care and Intensive Care Medicine
  • Nephrology

指紋 深入研究「Cathelicidin attenuates hyperoxia-induced kidney injury in newborn rats」主題。共同形成了獨特的指紋。

  • 引用此