Cancer-Associated Exosomal CBFB Facilitates the Aggressive Phenotype, Evasion of Oxidative Stress, and Preferential Predisposition to Bone Prometastatic Factor of Breast Cancer Progression

Chia Hung Hsu, Hon Ping Ma, Jiann Ruey Ong, Ming Shou Hsieh, Vijesh Kumar Yadav, Chi Tai Yeh, Tsu Yi Chao, Wei Hwa Lee, Wen Chien Huang, Kuang Tai Kuo, Iat Hang Fong, Chih Cheng Lin, Chih Ming Su

研究成果: 雜誌貢獻文章同行評審

1 引文 斯高帕斯(Scopus)

摘要

Background. Despite therapeutic advancements, metastasis remains a major cause in breast cancer-specific mortality. Breast cancer cells are susceptible to oxidative damage and exhibit high levels of oxidative stress, including protein damage, DNA damage, and lipid peroxidation. Some breast cancer risk factors may change the level of endogenous oxidative stress. Circulating exosomes play critical roles in tumorigenesis, distant metastasis, and poor prognosis in patients with breast cancer. Methods. We used an online database to analyze the expression and prognostic value of core binding factor subunit β (CBFB) and oxidative stress-related targets in patients with breast cancer. Serum from healthy controls and patients with primary breast cancer or bone metastatic breast cancer in the bone was collected. Exosomes were isolated from the sera or cell culture media. We used an MDA-MB-436-innoculated tumor xenograft mouse model for silencing CBFB. Results. Circulating exosomes from patients with breast cancer metastasis to the bone were rich in CBFB. The human mammary fibroblast cells HMF3A and fibroblasts derived from patient samples cocultured with exosomes had increased α-SMA and vimentin expression and IL-6 and OPN secretion. Similarly, nonmetastatic breast cancer cells cocultured with exosomes exhibited increased levels of certain markers, including vimentin, snail1, CXCR4, and Runx2, and the exosomes had high CBFB expression. Silencing CBFB in metastatic MDA-MB-436 and MDA-MB-157 cells resulted in suppressed migration and invasion and downregulation of vimentin, CXCR4, snail1, Runx2, CD44, and OPN. Conversely, CBFB overexpression resulted in upregulation of Runx2, vimentin, snail1, CD44, and OPN in nonmetastatic T47D and MCF12A cells. The CBFB-rich exosomes derived from MDA-MB-436 cells induced enhanced metastatic phenotypes in the low-metastatic T47D and MCF12A cell lines. Conclusion. Our results revealed that CBFB may promote bone metastasis in patients with breast cancer. Of therapeutic relevance, targeting CBFB resulted in decreased tumor burden and bone metastasis, downregulation of bone metastasis markers, and impaired regulation of oxidative stress-related proteins NAE1 and NOS1.

原文英語
文章編號8446629
期刊Disease Markers
2022
DOIs
出版狀態已發佈 - 2022

ASJC Scopus subject areas

  • 分子生物學
  • 遺傳學
  • 臨床生物化學
  • 生物化學(醫學)

指紋

深入研究「Cancer-Associated Exosomal CBFB Facilitates the Aggressive Phenotype, Evasion of Oxidative Stress, and Preferential Predisposition to Bone Prometastatic Factor of Breast Cancer Progression」主題。共同形成了獨特的指紋。

引用此