Baicalein attenuates intimal hyperplasia after rat carotid balloon injury through arresting cell-cycle progression and inhibiting ERK, Akt, and NF-κB activity in vascular smooth-muscle cells

Chieh Yu Peng, Shiow Lin Pan, Ying Wen Huang, Jih Hwa Guh, Ya Ling Chang, Che Ming Teng

研究成果: 雜誌貢獻文章

37 引文 (Scopus)

摘要

Baicalein (5,6,7-trioxyflavone-7-O-beta-D-glucuronide) derived from the Chinese herb Scutellaria baicalensis is well known as a lipoxygenase inhibitor. We investigated baicalein-mediated inhibitory effects on vascular smooth-muscle cell (VSMC) proliferation and intimal hyperplasia by balloon angioplasty in the rat. In vascular injury studies, baicalein significantly suppressed intimal hyperplasia by balloon angioplasty. Baicalein significantly inhibited cell proliferation via a lipoxygenase-independent pathway using [3H] thymidine incorporation, 3-(4,5-dimethylthiazol-2-yl)2,5-diphenyltetrazolium bromide (MTT), and flow cytometry assays. At the concentrations used, no cytotoxic effect on cell culture was found. Baicalein blocks cell-cycle progression in S/G2/M phase, consistent with the cell-cycle effects, baicalein significant inhibited cyclin D1, p42/44 mitogen-activated protein kinase (MAPK), and Akt phosphorylation without change in the other cell-cycle regulatory proteins. Furthermore, baicalein attenuated serum-induced deoxyribonucleic acid (DNA) binding activity of nuclear factor kappa B (NF-κB). These results show that baicalein blocks cell proliferation via blocking cell-cycle progression and proliferating events, including p42/44 MAPK and Akt activations as well as NF-κB activation. It also inhibits intimal hyperplasia after balloon vascular injury in the rat, indicating the therapeutic potential for treating restenosis after arterial injury.
原文英語
頁(從 - 到)579-588
頁數10
期刊Naunyn-Schmiedeberg's Archives of Pharmacology
378
發行號6
DOIs
出版狀態已發佈 - 十二月 2008
對外發佈Yes

指紋

Tunica Intima
NF-kappa B
Vascular Smooth Muscle
Smooth Muscle Myocytes
Hyperplasia
Cell Cycle
Wounds and Injuries
Balloon Angioplasty
Vascular System Injuries
Mitogen-Activated Protein Kinase 1
Cell Proliferation
Scutellaria baicalensis
Lipoxygenase Inhibitors
Cell Cycle Proteins
Lipoxygenase
baicalein
G2 Phase
Cyclin D1
Glucuronides
Cell Division

ASJC Scopus subject areas

  • Pharmacology

引用此文

@article{8ba79c8d1bef4674a52dca1e761a17bd,
title = "Baicalein attenuates intimal hyperplasia after rat carotid balloon injury through arresting cell-cycle progression and inhibiting ERK, Akt, and NF-κB activity in vascular smooth-muscle cells",
abstract = "Baicalein (5,6,7-trioxyflavone-7-O-beta-D-glucuronide) derived from the Chinese herb Scutellaria baicalensis is well known as a lipoxygenase inhibitor. We investigated baicalein-mediated inhibitory effects on vascular smooth-muscle cell (VSMC) proliferation and intimal hyperplasia by balloon angioplasty in the rat. In vascular injury studies, baicalein significantly suppressed intimal hyperplasia by balloon angioplasty. Baicalein significantly inhibited cell proliferation via a lipoxygenase-independent pathway using [3H] thymidine incorporation, 3-(4,5-dimethylthiazol-2-yl)2,5-diphenyltetrazolium bromide (MTT), and flow cytometry assays. At the concentrations used, no cytotoxic effect on cell culture was found. Baicalein blocks cell-cycle progression in S/G2/M phase, consistent with the cell-cycle effects, baicalein significant inhibited cyclin D1, p42/44 mitogen-activated protein kinase (MAPK), and Akt phosphorylation without change in the other cell-cycle regulatory proteins. Furthermore, baicalein attenuated serum-induced deoxyribonucleic acid (DNA) binding activity of nuclear factor kappa B (NF-κB). These results show that baicalein blocks cell proliferation via blocking cell-cycle progression and proliferating events, including p42/44 MAPK and Akt activations as well as NF-κB activation. It also inhibits intimal hyperplasia after balloon vascular injury in the rat, indicating the therapeutic potential for treating restenosis after arterial injury.",
keywords = "Baicalein, Proliferation, Restenosis, Vascular smooth-muscle cells",
author = "Peng, {Chieh Yu} and Pan, {Shiow Lin} and Huang, {Ying Wen} and Guh, {Jih Hwa} and Chang, {Ya Ling} and Teng, {Che Ming}",
year = "2008",
month = "12",
doi = "10.1007/s00210-008-0328-1",
language = "English",
volume = "378",
pages = "579--588",
journal = "Naunyn-Schmiedeberg's Archives of Pharmacology",
issn = "0028-1298",
publisher = "Springer Verlag",
number = "6",

}

TY - JOUR

T1 - Baicalein attenuates intimal hyperplasia after rat carotid balloon injury through arresting cell-cycle progression and inhibiting ERK, Akt, and NF-κB activity in vascular smooth-muscle cells

AU - Peng, Chieh Yu

AU - Pan, Shiow Lin

AU - Huang, Ying Wen

AU - Guh, Jih Hwa

AU - Chang, Ya Ling

AU - Teng, Che Ming

PY - 2008/12

Y1 - 2008/12

N2 - Baicalein (5,6,7-trioxyflavone-7-O-beta-D-glucuronide) derived from the Chinese herb Scutellaria baicalensis is well known as a lipoxygenase inhibitor. We investigated baicalein-mediated inhibitory effects on vascular smooth-muscle cell (VSMC) proliferation and intimal hyperplasia by balloon angioplasty in the rat. In vascular injury studies, baicalein significantly suppressed intimal hyperplasia by balloon angioplasty. Baicalein significantly inhibited cell proliferation via a lipoxygenase-independent pathway using [3H] thymidine incorporation, 3-(4,5-dimethylthiazol-2-yl)2,5-diphenyltetrazolium bromide (MTT), and flow cytometry assays. At the concentrations used, no cytotoxic effect on cell culture was found. Baicalein blocks cell-cycle progression in S/G2/M phase, consistent with the cell-cycle effects, baicalein significant inhibited cyclin D1, p42/44 mitogen-activated protein kinase (MAPK), and Akt phosphorylation without change in the other cell-cycle regulatory proteins. Furthermore, baicalein attenuated serum-induced deoxyribonucleic acid (DNA) binding activity of nuclear factor kappa B (NF-κB). These results show that baicalein blocks cell proliferation via blocking cell-cycle progression and proliferating events, including p42/44 MAPK and Akt activations as well as NF-κB activation. It also inhibits intimal hyperplasia after balloon vascular injury in the rat, indicating the therapeutic potential for treating restenosis after arterial injury.

AB - Baicalein (5,6,7-trioxyflavone-7-O-beta-D-glucuronide) derived from the Chinese herb Scutellaria baicalensis is well known as a lipoxygenase inhibitor. We investigated baicalein-mediated inhibitory effects on vascular smooth-muscle cell (VSMC) proliferation and intimal hyperplasia by balloon angioplasty in the rat. In vascular injury studies, baicalein significantly suppressed intimal hyperplasia by balloon angioplasty. Baicalein significantly inhibited cell proliferation via a lipoxygenase-independent pathway using [3H] thymidine incorporation, 3-(4,5-dimethylthiazol-2-yl)2,5-diphenyltetrazolium bromide (MTT), and flow cytometry assays. At the concentrations used, no cytotoxic effect on cell culture was found. Baicalein blocks cell-cycle progression in S/G2/M phase, consistent with the cell-cycle effects, baicalein significant inhibited cyclin D1, p42/44 mitogen-activated protein kinase (MAPK), and Akt phosphorylation without change in the other cell-cycle regulatory proteins. Furthermore, baicalein attenuated serum-induced deoxyribonucleic acid (DNA) binding activity of nuclear factor kappa B (NF-κB). These results show that baicalein blocks cell proliferation via blocking cell-cycle progression and proliferating events, including p42/44 MAPK and Akt activations as well as NF-κB activation. It also inhibits intimal hyperplasia after balloon vascular injury in the rat, indicating the therapeutic potential for treating restenosis after arterial injury.

KW - Baicalein

KW - Proliferation

KW - Restenosis

KW - Vascular smooth-muscle cells

UR - http://www.scopus.com/inward/record.url?scp=56549127848&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=56549127848&partnerID=8YFLogxK

U2 - 10.1007/s00210-008-0328-1

DO - 10.1007/s00210-008-0328-1

M3 - Article

C2 - 18663431

AN - SCOPUS:56549127848

VL - 378

SP - 579

EP - 588

JO - Naunyn-Schmiedeberg's Archives of Pharmacology

JF - Naunyn-Schmiedeberg's Archives of Pharmacology

SN - 0028-1298

IS - 6

ER -