Association of time-serial changes in ambient particulate matters (PMs) with respiratory emergency cases in Taipei’s Wenshan District

研究成果: 雜誌貢獻文章

2 引文 (Scopus)

摘要

Ambient air pollution poses a significant risk for a group of common and often debilitating respiratory diseases, but its direct impact on cause-specific respiratory diseases using emergency room visit (ERV) as an indicator remains to be fully explored. In this study, we conducted a time-series study of ambient PM2.5, NO2, SO2 and their association with ERV for asthma, COPD and pneumonia in a four-year time span. Relative risks for ERV as per log increase in the level of ambient pollutants with time lags of up to 10 days were calculated, using a generalized additive model of Poisson regression. Daily 24-h average concentrations of PM2.5 and pollutant gases were obtained from a local Gutting air quality monitoring station. Results showed that the ERVs for pneumonia and asthma were associated with the level of PM2.5. The effects of PM2.5 on the risk of ERV for asthma were found to be significant at lag days 1 and 2 with increasing risk of 4.34% [RR: 1.091; CI: 1.020–1.166 (95%)] and 3.58% [RR: 1.074; CI: 1.007–1.146 (95%)], respectively. The ERV for pneumonia was associated with the level of PM2.5 at lag days 5, 6 and 7, with increasing risk of 1.92% [RR: 1.039; CI: 1.009–1.070 (95%)], 2.03% [RR: 1.041; CI: 1.009–1.075 (95%)], and 1.82% [RR: 1.037; CI: 1.001–1.075 (95%)], respectively. Further, PM2.5, but not NO2 and SO2, posed a significant risk of ERV for asthma during spring at lag days 0, 1 and 2 (17.12%, RR: 1.408, CI: 1.075–1.238; 15.30%, RR: 1.358 CI: 1.158–1.166; 11.94%, RR: 1.165, CI: 1.004–1.121), which was particularly evident for those who were younger than 75 years of age. In contrast, only PM2.5 was a significant risk of ERV for COPD, which was primarily for those who were younger than 75 years of age during summer season at lag days 3, 4 and 5. (26.66%, RR: 1.704, CI: 1.104–2.632; 26.99%; RR: 1.716, CI: 1.151–2.557; 24.09%; RR: 1.619, CI: 1.111–2.360). Collectively, these results suggested significant seasonal variation and differential time lag effects of PM2.5 on ERV for asthma, COPD and pneumonia.
原文英語
文章編號e0181106
期刊PLoS One
12
發行號7
DOIs
出版狀態已發佈 - 七月 1 2017

指紋

Emergency rooms
Particulate Matter
asthma
Hospital Emergency Service
particulates
Emergencies
pneumonia
Asthma
Pneumonia
respiratory tract diseases
Chronic Obstructive Pulmonary Disease
Pulmonary diseases
pollutants
risk groups
air quality
air pollution
relative risk
time series analysis
Endogenous Retroviruses
seasonal variation

ASJC Scopus subject areas

  • Medicine(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)

引用此文

@article{aab86a6daa234ba5870ba26b1845006c,
title = "Association of time-serial changes in ambient particulate matters (PMs) with respiratory emergency cases in Taipei’s Wenshan District",
abstract = "Ambient air pollution poses a significant risk for a group of common and often debilitating respiratory diseases, but its direct impact on cause-specific respiratory diseases using emergency room visit (ERV) as an indicator remains to be fully explored. In this study, we conducted a time-series study of ambient PM2.5, NO2, SO2 and their association with ERV for asthma, COPD and pneumonia in a four-year time span. Relative risks for ERV as per log increase in the level of ambient pollutants with time lags of up to 10 days were calculated, using a generalized additive model of Poisson regression. Daily 24-h average concentrations of PM2.5 and pollutant gases were obtained from a local Gutting air quality monitoring station. Results showed that the ERVs for pneumonia and asthma were associated with the level of PM2.5. The effects of PM2.5 on the risk of ERV for asthma were found to be significant at lag days 1 and 2 with increasing risk of 4.34{\%} [RR: 1.091; CI: 1.020–1.166 (95{\%})] and 3.58{\%} [RR: 1.074; CI: 1.007–1.146 (95{\%})], respectively. The ERV for pneumonia was associated with the level of PM2.5 at lag days 5, 6 and 7, with increasing risk of 1.92{\%} [RR: 1.039; CI: 1.009–1.070 (95{\%})], 2.03{\%} [RR: 1.041; CI: 1.009–1.075 (95{\%})], and 1.82{\%} [RR: 1.037; CI: 1.001–1.075 (95{\%})], respectively. Further, PM2.5, but not NO2 and SO2, posed a significant risk of ERV for asthma during spring at lag days 0, 1 and 2 (17.12{\%}, RR: 1.408, CI: 1.075–1.238; 15.30{\%}, RR: 1.358 CI: 1.158–1.166; 11.94{\%}, RR: 1.165, CI: 1.004–1.121), which was particularly evident for those who were younger than 75 years of age. In contrast, only PM2.5 was a significant risk of ERV for COPD, which was primarily for those who were younger than 75 years of age during summer season at lag days 3, 4 and 5. (26.66{\%}, RR: 1.704, CI: 1.104–2.632; 26.99{\%}; RR: 1.716, CI: 1.151–2.557; 24.09{\%}; RR: 1.619, CI: 1.111–2.360). Collectively, these results suggested significant seasonal variation and differential time lag effects of PM2.5 on ERV for asthma, COPD and pneumonia.",
author = "Chang, {Jer Hwa} and Hsu, {Shih Chang} and Bai, {Kuan Jen} and Huang, {Shau Ku} and Hsu, {Chin Wang}",
year = "2017",
month = "7",
day = "1",
doi = "10.1371/journal.pone.0181106",
language = "English",
volume = "12",
journal = "PLoS One",
issn = "1932-6203",
publisher = "Public Library of Science",
number = "7",

}

TY - JOUR

T1 - Association of time-serial changes in ambient particulate matters (PMs) with respiratory emergency cases in Taipei’s Wenshan District

AU - Chang, Jer Hwa

AU - Hsu, Shih Chang

AU - Bai, Kuan Jen

AU - Huang, Shau Ku

AU - Hsu, Chin Wang

PY - 2017/7/1

Y1 - 2017/7/1

N2 - Ambient air pollution poses a significant risk for a group of common and often debilitating respiratory diseases, but its direct impact on cause-specific respiratory diseases using emergency room visit (ERV) as an indicator remains to be fully explored. In this study, we conducted a time-series study of ambient PM2.5, NO2, SO2 and their association with ERV for asthma, COPD and pneumonia in a four-year time span. Relative risks for ERV as per log increase in the level of ambient pollutants with time lags of up to 10 days were calculated, using a generalized additive model of Poisson regression. Daily 24-h average concentrations of PM2.5 and pollutant gases were obtained from a local Gutting air quality monitoring station. Results showed that the ERVs for pneumonia and asthma were associated with the level of PM2.5. The effects of PM2.5 on the risk of ERV for asthma were found to be significant at lag days 1 and 2 with increasing risk of 4.34% [RR: 1.091; CI: 1.020–1.166 (95%)] and 3.58% [RR: 1.074; CI: 1.007–1.146 (95%)], respectively. The ERV for pneumonia was associated with the level of PM2.5 at lag days 5, 6 and 7, with increasing risk of 1.92% [RR: 1.039; CI: 1.009–1.070 (95%)], 2.03% [RR: 1.041; CI: 1.009–1.075 (95%)], and 1.82% [RR: 1.037; CI: 1.001–1.075 (95%)], respectively. Further, PM2.5, but not NO2 and SO2, posed a significant risk of ERV for asthma during spring at lag days 0, 1 and 2 (17.12%, RR: 1.408, CI: 1.075–1.238; 15.30%, RR: 1.358 CI: 1.158–1.166; 11.94%, RR: 1.165, CI: 1.004–1.121), which was particularly evident for those who were younger than 75 years of age. In contrast, only PM2.5 was a significant risk of ERV for COPD, which was primarily for those who were younger than 75 years of age during summer season at lag days 3, 4 and 5. (26.66%, RR: 1.704, CI: 1.104–2.632; 26.99%; RR: 1.716, CI: 1.151–2.557; 24.09%; RR: 1.619, CI: 1.111–2.360). Collectively, these results suggested significant seasonal variation and differential time lag effects of PM2.5 on ERV for asthma, COPD and pneumonia.

AB - Ambient air pollution poses a significant risk for a group of common and often debilitating respiratory diseases, but its direct impact on cause-specific respiratory diseases using emergency room visit (ERV) as an indicator remains to be fully explored. In this study, we conducted a time-series study of ambient PM2.5, NO2, SO2 and their association with ERV for asthma, COPD and pneumonia in a four-year time span. Relative risks for ERV as per log increase in the level of ambient pollutants with time lags of up to 10 days were calculated, using a generalized additive model of Poisson regression. Daily 24-h average concentrations of PM2.5 and pollutant gases were obtained from a local Gutting air quality monitoring station. Results showed that the ERVs for pneumonia and asthma were associated with the level of PM2.5. The effects of PM2.5 on the risk of ERV for asthma were found to be significant at lag days 1 and 2 with increasing risk of 4.34% [RR: 1.091; CI: 1.020–1.166 (95%)] and 3.58% [RR: 1.074; CI: 1.007–1.146 (95%)], respectively. The ERV for pneumonia was associated with the level of PM2.5 at lag days 5, 6 and 7, with increasing risk of 1.92% [RR: 1.039; CI: 1.009–1.070 (95%)], 2.03% [RR: 1.041; CI: 1.009–1.075 (95%)], and 1.82% [RR: 1.037; CI: 1.001–1.075 (95%)], respectively. Further, PM2.5, but not NO2 and SO2, posed a significant risk of ERV for asthma during spring at lag days 0, 1 and 2 (17.12%, RR: 1.408, CI: 1.075–1.238; 15.30%, RR: 1.358 CI: 1.158–1.166; 11.94%, RR: 1.165, CI: 1.004–1.121), which was particularly evident for those who were younger than 75 years of age. In contrast, only PM2.5 was a significant risk of ERV for COPD, which was primarily for those who were younger than 75 years of age during summer season at lag days 3, 4 and 5. (26.66%, RR: 1.704, CI: 1.104–2.632; 26.99%; RR: 1.716, CI: 1.151–2.557; 24.09%; RR: 1.619, CI: 1.111–2.360). Collectively, these results suggested significant seasonal variation and differential time lag effects of PM2.5 on ERV for asthma, COPD and pneumonia.

UR - http://www.scopus.com/inward/record.url?scp=85025138476&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85025138476&partnerID=8YFLogxK

U2 - 10.1371/journal.pone.0181106

DO - 10.1371/journal.pone.0181106

M3 - Article

VL - 12

JO - PLoS One

JF - PLoS One

SN - 1932-6203

IS - 7

M1 - e0181106

ER -