TY - JOUR
T1 - Analysis of core-shell-isolated nanoparticle configurations used in the surface-enhanced raman scattering technique
AU - Kuo, Hung Fei
AU - Chang, Chun Chao
PY - 2014
Y1 - 2014
N2 - Core-shell-isolated nanoparticles are commonly used in the surface-enhanced Raman scattering (SERS) technique to detect binding events and in analyte identification at the molecule level. In this paper, an opticalscattering theoretical model was used in which the core-shell-isolated nanoparticles are considerably smaller than incident light wavelengths, and the finite difference time domain method of numerical electromagnetics was adopted to compute the scattered opticalpower density per unit volume of the nanoparticles. In addition, the power densities were analyzed using various shell materials and the influences of differing parameters (i.e., the size of metal nanoparticles, shell thickness, nanoparticle size, and the distance between nanoparticles) on power-density functions were explored. The results indicated that when the nanoparticle shells were coated with silicon dioxide (SiO2) and aluminum oxide (Al2O3) to a thickness of 1 nm and the nanoparticle core was gold (Au), a particle size of 35 nm was the optimal design. The optimal distance between Au nanoparticles possessing SiO2 shells was 5 nm and that between Au nanoparticles possessing Al 2O3 or titanium dioxide (TiO2) shells was 10 nm. Based on the format results of nanoparticle arrangement, the distance between the shell-isolated Au nanoparticles was 10 nm and generated a stronger scattered power density with an asymmetric arrangement than that generated using symmetrically arranged nanoparticles. The advantage of the proposed method in this paper over the conventional method is its ability to relate the scattered power density to the required number of nanoparticles used in the SERS technique.
AB - Core-shell-isolated nanoparticles are commonly used in the surface-enhanced Raman scattering (SERS) technique to detect binding events and in analyte identification at the molecule level. In this paper, an opticalscattering theoretical model was used in which the core-shell-isolated nanoparticles are considerably smaller than incident light wavelengths, and the finite difference time domain method of numerical electromagnetics was adopted to compute the scattered opticalpower density per unit volume of the nanoparticles. In addition, the power densities were analyzed using various shell materials and the influences of differing parameters (i.e., the size of metal nanoparticles, shell thickness, nanoparticle size, and the distance between nanoparticles) on power-density functions were explored. The results indicated that when the nanoparticle shells were coated with silicon dioxide (SiO2) and aluminum oxide (Al2O3) to a thickness of 1 nm and the nanoparticle core was gold (Au), a particle size of 35 nm was the optimal design. The optimal distance between Au nanoparticles possessing SiO2 shells was 5 nm and that between Au nanoparticles possessing Al 2O3 or titanium dioxide (TiO2) shells was 10 nm. Based on the format results of nanoparticle arrangement, the distance between the shell-isolated Au nanoparticles was 10 nm and generated a stronger scattered power density with an asymmetric arrangement than that generated using symmetrically arranged nanoparticles. The advantage of the proposed method in this paper over the conventional method is its ability to relate the scattered power density to the required number of nanoparticles used in the SERS technique.
KW - Core-shell-isolated nanoparticle
KW - finite difference time domain (FDTD)
KW - plasmon resonance
KW - Raman scattering
KW - surface enhanced
KW - total field scattered field
UR - http://www.scopus.com/inward/record.url?scp=84906877460&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84906877460&partnerID=8YFLogxK
U2 - 10.1109/JSEN.2014.2331459
DO - 10.1109/JSEN.2014.2331459
M3 - Article
AN - SCOPUS:84906877460
VL - 14
SP - 3708
EP - 3714
JO - IEEE Sensors Journal
JF - IEEE Sensors Journal
SN - 1530-437X
IS - 10
M1 - 6838952
ER -