An integrated bioinformatics study of a novel niclosamide derivative, nsc765689, a potential gsk3β/β-catenin /stat3/ cd44 suppressor with anti-glioblastoma properties

Ntlotlang Mokgautsi, Ya Ting Wen, Bashir Lawal, Harshita Khedkar, Maryam Rachmawati Sumitra, Alexander T.H. Wu, Hsu Shan Huang

研究成果: 雜誌貢獻文章同行評審

3 引文 斯高帕斯(Scopus)

摘要

Despite management efforts with standard surgery, radiation, and chemotherapy, glio-blastoma multiform (GBM) remains resistant to treatment, which leads to tumor recurrence due to glioma stem cells (GSCs) and therapy resistance. In this study, we used random computer-based prediction and target identification to assess activities of our newly synthesized niclosamide-de-rived compound, NSC765689, to target GBM oncogenic signaling. Using target prediction analyses, we identified glycogen synthase kinase 3β (GSK3β), β-Catenin, signal transducer and activator of transcription 3 (STAT3), and cluster of differentiation 44 (CD44) as potential druggable candidates of NSC765689. The above-mentioned signaling pathways were also predicted to be overexpressed in GBM tumor samples compared to adjacent normal samples. In addition, using bioinformatics tools, we also identified microRNA (miR)-135b as one of the most suppressed microRNAs in GBM sam-ples, which was reported to be upregulated through inhibition of GSK3β, and subsequently suppresses GBM tumorigenic properties and stemness. We further performed in silico molecular docking of NSC765689 with GBM oncogenes; GSK3β, β-Catenin, and STAT3, and the stem cell marker, CD44, to predict protein-ligand interactions. The results indicated that NSC765689 exhibited stronger binding affinities compared to its predecessor, LCC09, which was recently published by our laboratory, and was proven to inhibit GBM stemness and resistance. Moreover, we used available US National Cancer Institute (NCI) 60 human tumor cell lines to screen in vitro anticancer effects, including the anti-proliferative and cytotoxic activities of NSC765689 against GBM cells, and 50% cell growth inhibition (GI50) values ranged 0.23~5.13 μM. In summary, using computer-based predictions and target identification revealed that NSC765689 may be a potential pharmacological lead compound which can regulate GBM oncogene (GSK3β /β-Catenin /STAT3 / CD44) signaling and upregulate the miR-135b tumor suppressor. Therefore, further in vitro and in vivo investigations will be performed to validate the efficacy of NSC765689 as a novel potential GBM therapeutic.

原文英語
文章編號2464
頁(從 - 到)1-23
頁數23
期刊International journal of molecular sciences
22
發行號5
DOIs
出版狀態已發佈 - 三月 1 2021

ASJC Scopus subject areas

  • 催化
  • 分子生物學
  • 光譜
  • 電腦科學應用
  • 物理與理論化學
  • 有機化學
  • 無機化學

指紋

深入研究「An integrated bioinformatics study of a novel niclosamide derivative, nsc765689, a potential gsk3β/β-catenin /stat3/ cd44 suppressor with anti-glioblastoma properties」主題。共同形成了獨特的指紋。

引用此