Amine-surface-modified superparamagnetic iron oxide nanoparticles interfere with differentiation of human mesenchymal stem cells

You Kang Chang, Yu Peng Liu, Jennifer H. Ho, Shu Ching Hsu, Oscar K. Lee

研究成果: 雜誌貢獻文章

53 引文 斯高帕斯(Scopus)

摘要

Superparamagnetic iron oxide (SPIO) nanoparticles have been widely used for stem cell labeling and tracking. Surface modification has been known to improve biocompatibility, biodistribution, and labeling efficiency of SPIO nanoparticles. However, the effects of amine (NH 3+)-surface-modified SPIO nanoparticles on proliferation and differentiation of human mesenchymal stem cells (hMSCs) remain unclear. The purpose of this study is to investigate how amine-surface-modified SPIO nanoparticles affected hMSCs. In this study, intracellular uptake and the contiguous presence of amine-surface-modified SPIO nanoparticles in hMSCs were demonstrated by Prussian blue staining, transmission electron microscopy and magnetic resonance imaging. Moreover, accelerated cell proliferation was found to be associated with cellular internalization of amine-surface-modified SPIO nanoparticles. The osteogenic and chondrogenic differentiation potentials of hMSCs were impaired after treating with SPIO, while adipogenic potential was relatively unaffected. Altered cytokine production profile in hMSCs caused by amine-surface-modified SPIO nanoparticles may account for the increased proliferation and impaired differentiation potentials; concentrations of the growth factors in the SPIO-labeled condition medium including amphiregulin, glial cell-derived neurotrophic factor, heparin-binding EGF-like growth factor and vascular endothelial growth factor, as well as soluble form of macrophage colony-stimulating factor receptor and SCF receptor, were higher than in the unlabeled-condition medium. In summary, although amine-surface-modified SPIO labeling is effective for cell tracking, properties of hMSCs may alter as a consequence and this needs to be taken into account when evaluating therapeutic efficacies of SPIO-labeled stem cells in vivo.

原文英語
頁(從 - 到)1499-1506
頁數8
期刊Journal of Orthopaedic Research
30
發行號9
DOIs
出版狀態已發佈 - 九月 2012

ASJC Scopus subject areas

  • Orthopedics and Sports Medicine

指紋 深入研究「Amine-surface-modified superparamagnetic iron oxide nanoparticles interfere with differentiation of human mesenchymal stem cells」主題。共同形成了獨特的指紋。

  • 引用此