Acute hypoxia enhances proteins' S-nitrosylation in endothelial cells

Shih-Chung Chen, Bin Huang, Yu Chi Liu, Kou-Gi Shyu, Pen Y. Lin, Danny Ling Wang

研究成果: 雜誌貢獻文章

28 引文 斯高帕斯(Scopus)

摘要

Hypoxia-induced responses are frequently encountered during cardiovascular injuries. Hypoxia triggers intracellular reactive oxygen species/nitric oxide (NO) imbalance. Recent studies indicate that NO-mediated S-nitrosylation (S-NO) of cysteine residue is a key posttranslational modification of proteins. We demonstrated that acute hypoxia to endothelial cells (ECs) transiently increased the NO levels via endothelial NO synthase (eNOS) activation. A modified biotin-switch method coupled with Western blot on 2-dimentional electrophoresis (2-DE) demonstrated that at least 11 major proteins have significant increase in S-NO after acute hypoxia. Mass analysis by CapLC/Q-TOF identified those as Ras-GTPase-activating protein, protein disulfide-isomerase, human elongation factor-1-delta, tyrosine 3/tryptophan 5-monooxygenase activating protein, and several cytoskeleton proteins. The S-nitrosylated cysteine residue on tropomyosin (Cys 170) and β-actin (Cys 285) was further verified with the trypsic peptides analyzed by MASCOT search program. Further understanding of the functional relevance of these S-nitrosylated proteins may provide a molecular basis for treating ischemia-induced vascular disorders.
原文英語
頁(從 - 到)1274-1278
頁數5
期刊Biochemical and Biophysical Research Communications
377
發行號4
DOIs
出版狀態已發佈 - 十二月 26 2008

ASJC Scopus subject areas

  • Biochemistry
  • Biophysics
  • Cell Biology
  • Molecular Biology

指紋 深入研究「Acute hypoxia enhances proteins' S-nitrosylation in endothelial cells」主題。共同形成了獨特的指紋。

  • 引用此