A Unique Carboxylic-Acid Hydrogen-Bond Network (CAHBN) Confers Glutaminyl Cyclase Activity on M28 Family Enzymes

Kai Fa Huang, Jing Siou Huang, Mao Lun Wu, Wan Ling Hsieh, Kai Cheng Hsu, Hui Ling Hsu, Tzu Ping Ko, Andrew H.J. Wang

研究成果: 雜誌貢獻文章同行評審

1 引文 斯高帕斯(Scopus)

摘要

Proteins with sequence or structure similar to those of di-Zn exopeptidases are usually classified as the M28-family enzymes, including the mammalian-type glutaminyl cyclases (QCs). QC catalyzes protein N-terminal pyroglutamate formation, a posttranslational modification important under many physiological and pathological conditions, and is a drug target for treating neurodegenerative diseases, cancers and inflammatory disorders. Without functional characterization, mammalian QCs and their orthologs remain indistinguishable at the sequence and structure levels from other M28-family proteins, leading to few reported QCs. Here, we show that a low-barrier carboxylic-acid hydrogen-bond network (CAHBN) is required for QC activity and discriminates QCs from M28-family peptidases. We demonstrate that the CAHBN-containing M28 peptidases deposited in the PDB are indeed QCs. Our analyses identify several thousands of QCs from the three domains of life, and we enzymatically and structurally characterize several. For the first time, the interplay between a CAHBN and the binuclear metal-binding center of mammalian QCs is made clear. We found that the presence or absence of CAHBN is a key discriminator for the formation of either the mono-Zn QCs or the di-Zn exopeptidases. Our study helps explain the possible roles of QCs in life.

原文英語
文章編號166960
期刊Journal of Molecular Biology
433
發行號13
DOIs
出版狀態已發佈 - 6月 25 2021

ASJC Scopus subject areas

  • 生物物理學
  • 結構生物學
  • 分子生物學

指紋

深入研究「A Unique Carboxylic-Acid Hydrogen-Bond Network (CAHBN) Confers Glutaminyl Cyclase Activity on M28 Family Enzymes」主題。共同形成了獨特的指紋。

引用此